Suppr超能文献

MscL 门控中的膜张力、脂质适应、构象变化和能量学。

Membrane tension, lipid adaptation, conformational changes, and energetics in MscL gating.

机构信息

Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas, Lawrence, Kansas, USA.

出版信息

Biophys J. 2011 Aug 3;101(3):671-9. doi: 10.1016/j.bpj.2011.06.029.

Abstract

This study aims to explore gating mechanisms of mechanosensitive channels in terms of membrane tension, membrane adaptation, protein conformation, and energetics. The large conductance mechanosensitive channel from Mycobacterium tuberculosis (Tb-MscL) is used as a model system; Tb-MscL acts as a safety valve by releasing small osmolytes through the channel opening under extreme hypoosmotic conditions. Based on the assumption that the channel gating involves tilting of the transmembrane (TM) helices, we have performed free energy simulations of Tb-MscL as a function of TM helix tilt angle in a dimyristoylphosphatidylcholine bilayer. Based on the change in system dimensions, TM helix tilting is shown to be essentially equivalent to applying an excess surface tension to the membrane, causing channel expansion, lipid adaptation, and membrane thinning. Such equivalence is further corroborated by the observation that the free energy cost of Tb-MscL channel expansion is comparable to the work done by the excess surface tension. Tb-MscL TM helix tilting results in an expanded water-conducting channel of an outer dimension similar to the proposed fully open MscL structure. The free energy decomposition indicates a possible expansion mechanism in which tilting and expanding of TM2 facilitates the iris-like motion of TM1, producing an expanded Tb-MscL.

摘要

本研究旨在从膜张力、膜适应、蛋白质构象和能量学角度探讨机械敏感通道的门控机制。以结核分枝杆菌(Mycobacterium tuberculosis,Tb)大电导机械敏感通道(Tb-MscL)为模型系统;在极端低渗条件下,Tb-MscL 通过通道打开释放小渗透物,充当安全阀。基于通道门控涉及跨膜(TM)螺旋倾斜的假设,我们对 DMPC 双层中 Tb-MscL 的 TM 螺旋倾斜角度进行了自由能模拟。根据系统尺寸的变化,TM 螺旋倾斜实质上等效于向膜施加过量表面张力,导致通道扩张、脂质适应和膜变薄。这种等效性进一步得到了证实,即 Tb-MscL 通道扩张的自由能成本与过量表面张力所做的功相当。Tb-MscL 的 TM 螺旋倾斜导致一个扩展的水导通道,其外部尺寸类似于提出的完全开放的 MscL 结构。自由能分解表明存在一种可能的扩张机制,其中 TM2 的倾斜和扩张有助于 TM1 的虹膜样运动,产生扩张的 Tb-MscL。

相似文献

1
Membrane tension, lipid adaptation, conformational changes, and energetics in MscL gating.
Biophys J. 2011 Aug 3;101(3):671-9. doi: 10.1016/j.bpj.2011.06.029.
3
Gating of the mechanosensitive channel protein MscL: the interplay of membrane and protein.
Biophys J. 2008 May 1;94(9):3497-511. doi: 10.1529/biophysj.107.109850. Epub 2008 Jan 22.
5
Mechanical coupling of the multiple structural elements of the large-conductance mechanosensitive channel during expansion.
Proc Natl Acad Sci U S A. 2015 Aug 25;112(34):10726-31. doi: 10.1073/pnas.1503202112. Epub 2015 Aug 10.
6
Gating of MscL studied by steered molecular dynamics.
Biophys J. 2003 Oct;85(4):2087-99. doi: 10.1016/S0006-3495(03)74637-2.
7
Phosphatidylinositol is crucial for the mechanosensitivity of Mycobacterium tuberculosis MscL.
Biochemistry. 2013 Aug 13;52(32):5415-20. doi: 10.1021/bi400790j. Epub 2013 Aug 1.
8
Pulling MscL open via N-terminal and TM1 helices: A computational study towards engineering an MscL nanovalve.
PLoS One. 2017 Aug 31;12(8):e0183822. doi: 10.1371/journal.pone.0183822. eCollection 2017.
9
Biophysical Mechanisms of Membrane-Thickness-Dependent MscL Gating: An All-Atom Molecular Dynamics Study.
Langmuir. 2019 Jun 11;35(23):7432-7442. doi: 10.1021/acs.langmuir.8b02074. Epub 2018 Aug 30.
10
Open channel structure of MscL and the gating mechanism of mechanosensitive channels.
Nature. 2002 Aug 29;418(6901):942-8. doi: 10.1038/nature00992.

引用本文的文献

1
Biological characteristics of mechanosensitive channels MscS and MscL in .
J Bacteriol. 2024 Mar 21;206(3):e0042923. doi: 10.1128/jb.00429-23. Epub 2024 Feb 23.
2
Elucidating the molecular basis of spontaneous activation in an engineered mechanosensitive channel.
Comput Struct Biotechnol J. 2022 May 23;20:2539-2550. doi: 10.1016/j.csbj.2022.05.022. eCollection 2022.
4
Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation.
Chem Rev. 2019 May 8;119(9):6086-6161. doi: 10.1021/acs.chemrev.8b00608. Epub 2019 Apr 12.
5
High-Throughput Simulations Reveal Membrane-Mediated Effects of Alcohols on MscL Gating.
J Am Chem Soc. 2017 Feb 22;139(7):2664-2671. doi: 10.1021/jacs.6b11091. Epub 2017 Feb 10.
6
How Tolerant are Membrane Simulations with Mismatch in Area per Lipid between Leaflets?
J Chem Theory Comput. 2015 Jul 14;11(7):3466-77. doi: 10.1021/acs.jctc.5b00232.
7
Solid-State NMR-Restrained Ensemble Dynamics of a Membrane Protein in Explicit Membranes.
Biophys J. 2015 Apr 21;108(8):1954-62. doi: 10.1016/j.bpj.2015.03.012.
8
The power of coarse graining in biomolecular simulations.
Wiley Interdiscip Rev Comput Mol Sci. 2014 May;4(3):225-248. doi: 10.1002/wcms.1169.
9
E. coli outer membrane and interactions with OmpLA.
Biophys J. 2014 Jun 3;106(11):2493-502. doi: 10.1016/j.bpj.2014.04.024.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
3
Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types.
J Phys Chem B. 2010 Jun 17;114(23):7830-43. doi: 10.1021/jp101759q.
4
Structure of a tetrameric MscL in an expanded intermediate state.
Nature. 2009 Sep 3;461(7260):120-4. doi: 10.1038/nature08277. Epub 2009 Aug 23.
5
CHARMM-GUI Membrane Builder for mixed bilayers and its application to yeast membranes.
Biophys J. 2009 Jul 8;97(1):50-8. doi: 10.1016/j.bpj.2009.04.013.
7
CHARMM: the biomolecular simulation program.
J Comput Chem. 2009 Jul 30;30(10):1545-614. doi: 10.1002/jcc.21287.
8
Importance of direct interactions with lipids for the function of the mechanosensitive channel MscL.
Biochemistry. 2008 Nov 18;47(46):12175-84. doi: 10.1021/bi801352a. Epub 2008 Oct 25.
9
Role of hydrogen bonding and helix-lipid interactions in transmembrane helix association.
J Am Chem Soc. 2008 May 21;130(20):6456-62. doi: 10.1021/ja711239h. Epub 2008 Apr 19.
10
Gating mechanisms of mechanosensitive channels of large conductance, II: systematic study of conformational transitions.
Biophys J. 2008 Jul;95(2):581-96. doi: 10.1529/biophysj.107.128496. Epub 2008 Apr 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验