Im Wonpil, Lee Jinhyuk, Kim Taehoon, Rui Huan
Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, USA.
J Comput Chem. 2009 Aug;30(11):1622-33. doi: 10.1002/jcc.21320.
Understanding the delicate balance of forces governing helix or beta-hairpin interactions in transmembrane (TM) proteins is central to understanding membrane structure and function. These membrane constituent interactions play an essential role in determining the structure and function of membrane proteins, and protein interactions in membranes, and thus form the basis for many vital processes, including TM signaling, transport of ions and small molecules, energy transduction, and cell-cell recognition. "Why does a single-pass TM helix or beta-hairpin have specific orientations in membranes?" "What are the roles of hydrogen bonds, close packing, and helix-lipid or beta-hairpin-lipid interactions in helix or beta-hairpin associations in membranes?" "How do these interactions change the membrane structures?" "How do TM domains transmit signals across membranes?" These are important membrane biophysical questions that can be addressed by understanding the delicate balance of forces governing helix or beta-hairpin interactions with/in membranes. In this work, we summarize a series of helix/beta-hairpin restraint potentials that we have developed, and illustrate their applications that begin to address the complicated energetics and molecular mechanisms of these interactions at the atomic level by calculating the potentials of mean force (PMFs) along reaction coordinates relevant to helix/beta-hairpin motions in membranes and dissecting the total PMF into the contributions arising from physically important microscopic forces.
理解跨膜(TM)蛋白中控制螺旋或β-发夹相互作用的力的微妙平衡,对于理解膜的结构和功能至关重要。这些膜成分间的相互作用在决定膜蛋白的结构和功能以及膜内蛋白相互作用方面起着至关重要的作用,因此构成了许多重要过程的基础,包括跨膜信号传导、离子和小分子运输、能量转换以及细胞间识别。“单通道跨膜螺旋或β-发夹在膜中为何具有特定取向?”“氢键、紧密堆积以及螺旋-脂质或β-发夹-脂质相互作用在膜中螺旋或β-发夹缔合中起什么作用?”“这些相互作用如何改变膜结构?”“跨膜结构域如何跨膜传递信号?”这些都是重要的膜生物物理问题,通过理解控制螺旋或β-发夹与膜相互作用/在膜内相互作用的力的微妙平衡可以解决。在这项工作中,我们总结了我们开发的一系列螺旋/β-发夹约束势,并通过计算沿与膜中螺旋/β-发夹运动相关的反应坐标的平均力势(PMF)并将总PMF分解为由物理上重要的微观力产生的贡献,来说明它们在原子水平上开始解决这些相互作用的复杂能量学和分子机制的应用。