Suppr超能文献

利用 MNPs-PEI/pDNA/free PEI 磁转染体探讨磁转染的机制。

Insights into the mechanism of magnetofection using MNPs-PEI/pDNA/free PEI magnetofectins.

机构信息

Nano Biomedical Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China.

出版信息

Int J Pharm. 2011 Oct 31;419(1-2):247-54. doi: 10.1016/j.ijpharm.2011.07.017. Epub 2011 Jul 23.

Abstract

Magnetofection is an efficient new physical gene transfection technology. Despite its effective gene delivery capability, till now relatively little work has been conducted on the mechanism of magnetofection, especially the intracellular fates of the components of magnetofectins and their effects on magnetofection. In this study, we investigated the mechanism of magnetofection using magnetofectins that were prepared via electrostatic self-assembly of the three components: polyethyleneimine (PEI)-coated magnetic nanoparticles (MNPs-PEI), plasmid DNA (pDNA) and PEI in the free form (free PEI). TEM observation and agarose gel electrophoresis assays have indicated MNPs play the role of driving magnetofectins to the cell surface without entering into the nucleus. Confocal microscopic tracking of fluorescence-labeled PEI has shown that the free PEI (green) can be found in the nucleus but almost all of the MNPs-PEI (red) are confined in the cytoplasm in COS-7 cells 30 min post-transfection or in SPC-A1 cells 90 min post-transfection, implying that the pDNA/PEI complex must separate from MNPs-PEI before entering into the nucleus. In addition, reporter gene assays showed the magnetofectins, in which the free PEI was absent, failed to transfect SPC-A1 or COS-7 cell lines; and there was an optimal ratio of the constituents of magnectofectins to achieve optimal transfection efficiency by balancing stable complex formation and facile release of PEI/pDNA from the complex. In summary, our findings further the knowledge of magnetofection and can be helpful for the design and preparation of gene delivery vehicles for effective magnetofection.

摘要

磁转染是一种有效的新物理基因转染技术。尽管其具有有效的基因传递能力,但到目前为止,关于磁转染的机制,特别是磁转染因子的成分的细胞内命运及其对磁转染的影响,相对较少的工作已经进行。在这项研究中,我们使用通过静电自组装三种成分制备的磁转染剂研究了磁转染的机制:聚乙烯亚胺(PEI)包覆的磁性纳米颗粒(MNPs-PEI)、质粒 DNA(pDNA)和游离形式的 PEI(游离 PEI)。TEM 观察和琼脂糖凝胶电泳分析表明,MNPs 起着将磁转染剂驱动到细胞表面而不进入细胞核的作用。荧光标记的 PEI 的共聚焦显微镜跟踪显示,游离 PEI(绿色)可在细胞核中找到,但在转染后 30 分钟的 COS-7 细胞或转染后 90 分钟的 SPC-A1 细胞中,几乎所有的 MNPs-PEI(红色)都局限在细胞质中,这意味着 pDNA/PEI 复合物必须在进入细胞核之前与 MNPs-PEI 分离。此外,报告基因分析表明,没有游离 PEI 的磁转染剂未能转染 SPC-A1 或 COS-7 细胞系;并且磁转染因子的成分存在最佳比例,通过平衡稳定复合物的形成和 PEI/pDNA 从复合物中易于释放,可以实现最佳的转染效率。总之,我们的发现进一步加深了对磁转染的认识,并有助于设计和制备有效的磁转染基因传递载体。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验