Suppr超能文献

使用新型均匀磁场提高磁性聚乙烯亚胺纳米颗粒对MG-63成骨细胞的磁转染效率

Improving Magnetofection of Magnetic Polyethylenimine Nanoparticles into MG-63 Osteoblasts Using a Novel Uniform Magnetic Field.

作者信息

Cen Chaode, Wu Jun, Zhang Yong, Luo Cong, Xie Lina, Zhang Xin, Yang Xiaolan, Li Ming, Bi Yang, Li Tingyu, He Tongchuan

机构信息

Department of Orthopedics, Guizhou Provincial Orthopedics Hospital, Guiyang, 550000, People's Republic of China.

Department of Orthopedics, Laboratory of Orthopedic Biomaterials, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China.

出版信息

Nanoscale Res Lett. 2019 Mar 12;14(1):90. doi: 10.1186/s11671-019-2882-5.

Abstract

This study aimed to improve the magnetofection of MG-63 osteoblasts by integrating the use of a novel uniform magnetic field with low molecular weight polyethylenimine modified superparamagnetic iron oxide nanoparticles (PEI-SPIO-NPs). The excellent characteristics of PEI-SPIO-NPs such as size, zeta potential, the pDNA binding and protective ability were determined to be suitable for gene delivery. The novel uniform magnetic field enabled polyethylenimine-modified superparamagnetic iron oxide nanoparticles/pDNA complexes (PEI-SPIO-NPs/pDNA complexes) to rapidly and uniformly distribute on the surface of MG-63 cells, averting local transfection and decreasing disruption of the membrane caused by the centralization of positively charged PEI-SPIO-NPs, thereby increasing the effective coverage of magnetic gene carriers during transfection, and improving magnetofection efficiency. This innovative uniform magnetic field can be used to determine the optimal amount between PEI-SPIO-NPs and pDNA, as well as screen for the optimal formulation design of magnetic gene carrier under the homogenous conditions. Most importantly, the novel uniform magnetic field facilitates the transfection of PEI-SPIO-NPs/pDNA into osteoblasts, thereby providing a novel approach for the targeted delivery of therapeutic genes to osteosarcoma tissues as well as a reference for the treatment of other tumors.

摘要

本研究旨在通过将新型均匀磁场与低分子量聚乙烯亚胺修饰的超顺磁性氧化铁纳米颗粒(PEI-SPIO-NPs)结合使用,提高MG-63成骨细胞的磁转染效率。已确定PEI-SPIO-NPs的优异特性,如尺寸、zeta电位、与pDNA的结合能力和保护能力,适合用于基因递送。新型均匀磁场使聚乙烯亚胺修饰的超顺磁性氧化铁纳米颗粒/pDNA复合物(PEI-SPIO-NPs/pDNA复合物)能够快速且均匀地分布在MG-63细胞表面,避免局部转染,并减少带正电的PEI-SPIO-NPs集中导致的细胞膜破坏,从而在转染过程中增加磁性基因载体的有效覆盖范围,提高磁转染效率。这种创新的均匀磁场可用于确定PEI-SPIO-NPs与pDNA之间的最佳用量,以及在均匀条件下筛选磁性基因载体的最佳配方设计。最重要的是,新型均匀磁场有助于将PEI-SPIO-NPs/pDNA转染到成骨细胞中,从而为将治疗性基因靶向递送至骨肉瘤组织提供了一种新方法,并为其他肿瘤的治疗提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c364/6419855/92b45b2fef62/11671_2019_2882_Fig1_HTML.jpg

相似文献

2
Polyethylenimine-associated cerium oxide nanoparticles: A novel promising gene delivery vector.
Life Sci. 2019 Sep 1;232:116661. doi: 10.1016/j.lfs.2019.116661. Epub 2019 Jul 16.
6
Insights into the mechanism of magnetofection using MNPs-PEI/pDNA/free PEI magnetofectins.
Int J Pharm. 2011 Oct 31;419(1-2):247-54. doi: 10.1016/j.ijpharm.2011.07.017. Epub 2011 Jul 23.
7
Hybrid polyethylenimine and polyacrylic acid-bound iron oxide as a magnetoplex for gene delivery.
Langmuir. 2012 Feb 21;28(7):3542-52. doi: 10.1021/la204529u. Epub 2012 Feb 7.
8
Plasmid-DNA Delivery by Covalently Functionalized PEI-SPIONs as a Potential 'Magnetofection' Agent.
Molecules. 2022 Nov 1;27(21):7416. doi: 10.3390/molecules27217416.
9
Superparamagnetic nanoparticles for effective delivery of malaria DNA vaccine.
Langmuir. 2011 Apr 5;27(7):3703-12. doi: 10.1021/la104479c. Epub 2011 Mar 1.

引用本文的文献

1
Effective gene delivery using size dependant nano core-shell in human cervical cancer cell lines by magnetofection.
PLoS One. 2023 Sep 7;18(9):e0289731. doi: 10.1371/journal.pone.0289731. eCollection 2023.
2
Aspects of high-performance and bio-acceptable magnetic nanoparticles for biomedical application.
Asian J Pharm Sci. 2021 Nov;16(6):704-737. doi: 10.1016/j.ajps.2021.05.005. Epub 2021 Jul 4.
3
Design of transfections: Implementation of design of experiments for cell transfection fine tuning.
Biotechnol Bioeng. 2021 Nov;118(11):4488-4502. doi: 10.1002/bit.27918. Epub 2021 Sep 1.
4
Magnetic transfection with superparamagnetic chitosan-loaded IGFBP nanoparticles and their biosafety.
R Soc Open Sci. 2021 Jan 13;8(1):201331. doi: 10.1098/rsos.201331. eCollection 2021 Jan.
5
Tailoring Iron Oxide Nanoparticles for Efficient Cellular Internalization and Endosomal Escape.
Nanomaterials (Basel). 2020 Sep 11;10(9):1816. doi: 10.3390/nano10091816.

本文引用的文献

1
Immunotherapy for osteosarcoma: Where do we go from here?
Pediatr Blood Cancer. 2018 Sep;65(9):e27227. doi: 10.1002/pbc.27227. Epub 2018 Jun 19.
2
Osteosarcoma: a comprehensive review.
SICOT J. 2018;4:12. doi: 10.1051/sicotj/2017028. Epub 2018 Apr 9.
3
Comparative Analysis of Polyethyleneimine Efficiency for Improvement of Plasmid DNA Bioavailability.
Bull Exp Biol Med. 2018 Mar;164(4):473-477. doi: 10.1007/s10517-018-4015-z. Epub 2018 Mar 6.
4
Nanoscale polysaccharide derivative as an AEG-1 siRNA carrier for effective osteosarcoma therapy.
Int J Nanomedicine. 2018 Feb 8;13:857-875. doi: 10.2147/IJN.S147747. eCollection 2018.
5
Current and future therapeutic approaches for osteosarcoma.
Expert Rev Anticancer Ther. 2018 Jan;18(1):39-50. doi: 10.1080/14737140.2018.1413939. Epub 2017 Dec 14.
7
Co-delivery of doxorubicin and recombinant plasmid pHSP70-Plk1-shRNA by bacterial magnetosomes for osteosarcoma therapy.
Int J Nanomedicine. 2016 Oct 25;11:5277-5286. doi: 10.2147/IJN.S115364. eCollection 2016.
8
Reduction of polyethylenimine-coated iron oxide nanoparticles induced autophagy and cytotoxicity by lactosylation.
Regen Biomater. 2016 Dec;3(4):223-9. doi: 10.1093/rb/rbw023. Epub 2016 Jun 12.
9
Linear and Branched PEIs (Polyethylenimines) and Their Property Space.
Int J Mol Sci. 2016 Apr 13;17(4):555. doi: 10.3390/ijms17040555.
10
A Gene Gun-mediated Nonviral RNA trans-splicing Strategy for Col7a1 Repair.
Mol Ther Nucleic Acids. 2016 Mar 1;5:e287. doi: 10.1038/mtna.2016.3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验