Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA.
Neuroimage. 2012 Jan 2;59(1):422-30. doi: 10.1016/j.neuroimage.2011.07.036. Epub 2011 Jul 23.
In this paper, we present a multi-atlas-based framework for accurate, consistent and simultaneous segmentation of a group of target images. Multi-atlas-based segmentation algorithms consider concurrently complementary information from multiple atlases to produce optimal segmentation outcomes. However, the accuracy of these algorithms relies heavily on the precise alignment of the atlases with the target image. In particular, the commonly used pairwise registration may result in inaccurate alignment especially between images with large shape differences. Additionally, when segmenting a group of target images, most current methods consider these images independently with disregard of their correlation, thus resulting in inconsistent segmentations of the same structures across different target images. We propose two novel strategies to address these limitations: 1) a novel tree-based groupwise registration method for concurrent alignment of both the atlases and the target images, and 2) an iterative groupwise segmentation method for simultaneous consideration of segmentation information propagated from all available images, including the atlases and other newly segmented target images. Evaluation based on various datasets indicates that the proposed multi-atlas-based multi-image segmentation (MABMIS) framework yields substantial improvements in terms of consistency and accuracy over methods that do not consider the group of target images holistically.
在本文中,我们提出了一种基于多图谱的框架,用于准确、一致和同时分割一组目标图像。基于多图谱的分割算法同时考虑来自多个图谱的互补信息,以产生最佳的分割结果。然而,这些算法的准确性在很大程度上依赖于图谱与目标图像的精确对齐。特别是,常用的两两配准可能会导致不准确的对齐,特别是在形状差异较大的图像之间。此外,当分割一组目标图像时,目前大多数方法独立考虑这些图像,而不考虑它们的相关性,因此导致同一结构在不同目标图像中的分割不一致。我们提出了两种新的策略来解决这些限制:1)一种新的基于树的分组配准方法,用于同时对齐图谱和目标图像,以及 2)一种迭代分组分割方法,用于同时考虑从所有可用图像(包括图谱和其他新分割的目标图像)传播的分割信息。基于各种数据集的评估表明,所提出的基于多图谱的多图像分割(MABMIS)框架在一致性和准确性方面都有显著的提高,优于不整体考虑目标图像组的方法。