Suppr超能文献

基于树状配准的迭代多图谱多影像分割。

Iterative multi-atlas-based multi-image segmentation with tree-based registration.

机构信息

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA.

出版信息

Neuroimage. 2012 Jan 2;59(1):422-30. doi: 10.1016/j.neuroimage.2011.07.036. Epub 2011 Jul 23.

Abstract

In this paper, we present a multi-atlas-based framework for accurate, consistent and simultaneous segmentation of a group of target images. Multi-atlas-based segmentation algorithms consider concurrently complementary information from multiple atlases to produce optimal segmentation outcomes. However, the accuracy of these algorithms relies heavily on the precise alignment of the atlases with the target image. In particular, the commonly used pairwise registration may result in inaccurate alignment especially between images with large shape differences. Additionally, when segmenting a group of target images, most current methods consider these images independently with disregard of their correlation, thus resulting in inconsistent segmentations of the same structures across different target images. We propose two novel strategies to address these limitations: 1) a novel tree-based groupwise registration method for concurrent alignment of both the atlases and the target images, and 2) an iterative groupwise segmentation method for simultaneous consideration of segmentation information propagated from all available images, including the atlases and other newly segmented target images. Evaluation based on various datasets indicates that the proposed multi-atlas-based multi-image segmentation (MABMIS) framework yields substantial improvements in terms of consistency and accuracy over methods that do not consider the group of target images holistically.

摘要

在本文中,我们提出了一种基于多图谱的框架,用于准确、一致和同时分割一组目标图像。基于多图谱的分割算法同时考虑来自多个图谱的互补信息,以产生最佳的分割结果。然而,这些算法的准确性在很大程度上依赖于图谱与目标图像的精确对齐。特别是,常用的两两配准可能会导致不准确的对齐,特别是在形状差异较大的图像之间。此外,当分割一组目标图像时,目前大多数方法独立考虑这些图像,而不考虑它们的相关性,因此导致同一结构在不同目标图像中的分割不一致。我们提出了两种新的策略来解决这些限制:1)一种新的基于树的分组配准方法,用于同时对齐图谱和目标图像,以及 2)一种迭代分组分割方法,用于同时考虑从所有可用图像(包括图谱和其他新分割的目标图像)传播的分割信息。基于各种数据集的评估表明,所提出的基于多图谱的多图像分割(MABMIS)框架在一致性和准确性方面都有显著的提高,优于不整体考虑目标图像组的方法。

相似文献

1
Iterative multi-atlas-based multi-image segmentation with tree-based registration.基于树状配准的迭代多图谱多影像分割。
Neuroimage. 2012 Jan 2;59(1):422-30. doi: 10.1016/j.neuroimage.2011.07.036. Epub 2011 Jul 23.
2
A unified framework for cross-modality multi-atlas segmentation of brain MRI.用于脑 MRI 多模态多图谱分割的统一框架。
Med Image Anal. 2013 Dec;17(8):1181-91. doi: 10.1016/j.media.2013.08.001. Epub 2013 Aug 19.
8
Groupwise multi-atlas segmentation of the spinal cord's internal structure.基于图谱的脊髓内部分割方法研究。
Med Image Anal. 2014 Apr;18(3):460-71. doi: 10.1016/j.media.2014.01.003. Epub 2014 Feb 5.
9
Groupwise combined segmentation and registration for atlas construction.用于图谱构建的逐组联合分割与配准
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):532-40. doi: 10.1007/978-3-540-75757-3_65.
10
Segmentation of image ensembles via latent atlases.通过潜在图谱对图像集进行分割。
Med Image Anal. 2010 Oct;14(5):654-65. doi: 10.1016/j.media.2010.05.004. Epub 2010 Jun 4.

引用本文的文献

3
Integrating Neuroimaging Measures in Nursing Research.将神经影像学测量融入护理研究中。
Biol Res Nurs. 2023 Jul;25(3):341-352. doi: 10.1177/10998004221140608. Epub 2022 Nov 18.
4
VoteNet: A Deep Learning Label Fusion Method for Multi-Atlas Segmentation.VoteNet:一种用于多图谱分割的深度学习标签融合方法。
Med Image Comput Comput Assist Interv. 2019 Oct;11766:202-210. doi: 10.1007/978-3-030-32248-9_23. Epub 2019 Oct 10.
10
Hypergraph learning for identification of COVID-19 with CT imaging.基于CT成像的超图学习用于新冠病毒肺炎的识别
Med Image Anal. 2021 Feb;68:101910. doi: 10.1016/j.media.2020.101910. Epub 2020 Nov 26.

本文引用的文献

3
A generalized learning based framework for fast brain image registration.一种基于广义学习的快速脑图像配准框架。
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):306-14. doi: 10.1007/978-3-642-15745-5_38.
4
Multiple cortical surface correspondence using pairwise shape similarity.使用成对形状相似性的多个皮质表面对应
Med Image Comput Comput Assist Interv. 2010;13(Pt 1):349-56. doi: 10.1007/978-3-642-15705-9_43.
5
Intermediate templates guided groupwise registration of diffusion tensor images.中间模板引导的弥散张量图像配准组。
Neuroimage. 2011 Jan 15;54(2):928-39. doi: 10.1016/j.neuroimage.2010.09.019. Epub 2010 Sep 17.
7
GRAM: A framework for geodesic registration on anatomical manifolds.GRAM:一种解剖流形上测地线配准的框架。
Med Image Anal. 2010 Oct;14(5):633-42. doi: 10.1016/j.media.2010.06.001. Epub 2010 Jun 8.
8
A generative model for image segmentation based on label fusion.基于标签融合的图像分割生成模型。
IEEE Trans Med Imaging. 2010 Oct;29(10):1714-29. doi: 10.1109/TMI.2010.2050897. Epub 2010 Jun 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验