Suppr超能文献

使用监督学习和动态信息的局部多图谱融合最优权重(SuperDyn):在海马体分割上的验证。

Optimal weights for local multi-atlas fusion using supervised learning and dynamic information (SuperDyn): validation on hippocampus segmentation.

机构信息

School of Engineering Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.

出版信息

Neuroimage. 2011 May 1;56(1):126-39. doi: 10.1016/j.neuroimage.2011.01.078. Epub 2011 Feb 4.

Abstract

We developed a novel method for spatially-local selection of atlas-weights in multi-atlas segmentation that combines supervised learning on a training set and dynamic information in the form of local registration accuracy estimates (SuperDyn). Supervised learning was applied using a jackknife learning approach and the methods were evaluated using leave-N-out cross-validation. We applied our segmentation method to hippocampal segmentation in 1.5T and 3T MRI from two datasets: 69 healthy middle-aged subjects (aged 44-49) and 37 healthy and cognitively-impaired elderly subjects (aged 72-84). Mean Dice overlap scores (left hippocampus, right hippocampus) of (83.3, 83.2) and (85.1, 85.3) from the respective datasets were found to be significantly higher than those obtained via equally-weighted fusion, STAPLE, and dynamic fusion. In addition to global surface distance and volume metrics, we also investigated accuracy at a spatially-local scale using a surface-based segmentation performance assessment method (SurfSPA), which generates cohort-specific maps of segmentation accuracy quantified by inward or outward displacement relative to the manual segmentations. These measurements indicated greater agreement with manual segmentation and lower variability for the proposed segmentation method, as compared to equally-weighted fusion.

摘要

我们开发了一种新的方法,用于在多图谱分割中对图谱权重进行空间局部选择,该方法结合了在训练集上的监督学习和以局部配准精度估计形式的动态信息(SuperDyn)。使用刀切学习方法进行监督学习,并用留一交叉验证法评估方法。我们将我们的分割方法应用于两个数据集的 1.5T 和 3T MRI 中的海马体分割:69 名健康中年受试者(年龄 44-49 岁)和 37 名健康和认知障碍老年受试者(年龄 72-84 岁)。来自各自数据集的左海马体和右海马体的平均 Dice 重叠得分(83.3、83.2)和(85.1、85.3)明显高于通过等权重融合、STAPLE 和动态融合获得的得分。除了全局表面距离和体积指标外,我们还使用基于表面的分割性能评估方法(SurfSPA)在空间局部尺度上研究了准确性,该方法生成了分割准确性的图谱特异性图,通过相对于手动分割的向内或向外位移来量化。与等权重融合相比,这些测量表明与手动分割的一致性更高,且分割方法的变异性更低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验