文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

EMSAR: estimation of transcript abundance from RNA-seq data by mappability-based segmentation and reclustering.

作者信息

Lee Soohyun, Seo Chae Hwa, Alver Burak Han, Lee Sanghyuk, Park Peter J

机构信息

Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.

Emerging Technology Center, DNA link, Seoul, South Korea.

出版信息

BMC Bioinformatics. 2015 Sep 3;16:278. doi: 10.1186/s12859-015-0704-z.


DOI:10.1186/s12859-015-0704-z
PMID:26335049
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4559005/
Abstract

BACKGROUND: RNA-seq has been widely used for genome-wide expression profiling. RNA-seq data typically consists of tens of millions of short sequenced reads from different transcripts. However, due to sequence similarity among genes and among isoforms, the source of a given read is often ambiguous. Existing approaches for estimating expression levels from RNA-seq reads tend to compromise between accuracy and computational cost. RESULTS: We introduce a new approach for quantifying transcript abundance from RNA-seq data. EMSAR (Estimation by Mappability-based Segmentation And Reclustering) groups reads according to the set of transcripts to which they are mapped and finds maximum likelihood estimates using a joint Poisson model for each optimal set of segments of transcripts. The method uses nearly all mapped reads, including those mapped to multiple genes. With an efficient transcriptome indexing based on modified suffix arrays, EMSAR minimizes the use of CPU time and memory while achieving accuracy comparable to the best existing methods. CONCLUSIONS: EMSAR is a method for quantifying transcripts from RNA-seq data with high accuracy and low computational cost. EMSAR is available at https://github.com/parklab/emsar.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab9/4559005/fbbaa3f9e680/12859_2015_704_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab9/4559005/ea9cdcabda13/12859_2015_704_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab9/4559005/72b19510e317/12859_2015_704_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab9/4559005/161592772717/12859_2015_704_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab9/4559005/e2329e812aa5/12859_2015_704_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab9/4559005/087c3292861f/12859_2015_704_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab9/4559005/e34c945100b7/12859_2015_704_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab9/4559005/2d5f3ef5a2da/12859_2015_704_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab9/4559005/fbbaa3f9e680/12859_2015_704_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab9/4559005/ea9cdcabda13/12859_2015_704_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab9/4559005/72b19510e317/12859_2015_704_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab9/4559005/161592772717/12859_2015_704_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab9/4559005/e2329e812aa5/12859_2015_704_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab9/4559005/087c3292861f/12859_2015_704_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab9/4559005/e34c945100b7/12859_2015_704_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab9/4559005/2d5f3ef5a2da/12859_2015_704_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab9/4559005/fbbaa3f9e680/12859_2015_704_Fig8_HTML.jpg

相似文献

[1]
EMSAR: estimation of transcript abundance from RNA-seq data by mappability-based segmentation and reclustering.

BMC Bioinformatics. 2015-9-3

[2]
RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome.

BMC Bioinformatics. 2011-8-4

[3]
Improving RNA-Seq expression estimation by modeling isoform- and exon-specific read sequencing rate.

BMC Bioinformatics. 2015-10-16

[4]
Blind spots of quantitative RNA-seq: the limits for assessing abundance, differential expression, and isoform switching.

BMC Bioinformatics. 2013-12-24

[5]
CIDANE: comprehensive isoform discovery and abundance estimation.

Genome Biol. 2016-1-30

[6]
Using non-uniform read distribution models to improve isoform expression inference in RNA-Seq.

Bioinformatics. 2010-12-17

[7]
ORMAN: optimal resolution of ambiguous RNA-Seq multimappings in the presence of novel isoforms.

Bioinformatics. 2013-10-15

[8]
Hierarchical analysis of RNA-seq reads improves the accuracy of allele-specific expression.

Bioinformatics. 2018-7-1

[9]
A Conceptual Framework for Abundance Estimation of Genomic Targets in the Presence of Ambiguous Short Sequencing Reads.

J Comput Biol. 2020-8

[10]
Differential expression analysis of RNA sequencing data by incorporating non-exonic mapped reads.

BMC Genomics. 2015

引用本文的文献

[1]
Multidimensional landscape of non-alcoholic fatty liver disease-related disease spectrum uncovered by big omics data: Profiling evidence and new perspectives.

Smart Med. 2023-4-17

[2]
Bioinformatics services for analyzing massive genomic datasets.

Genomics Inform. 2020-3

[3]
Understanding the Role of the WRKY Gene Family under Stress Conditions in Pigeonpea ( L.).

Plants (Basel). 2019-7-10

[4]
Further confirmation of second- and third-generation Eimeria necatrix merozoite DEGs using suppression subtractive hybridization.

Parasitol Res. 2019-4

[5]
A junction coverage compatibility score to quantify the reliability of transcript abundance estimates and annotation catalogs.

Life Sci Alliance. 2019-1-17

[6]
Event Analysis: Using Transcript Events To Improve Estimates of Abundance in RNA-seq Data.

G3 (Bethesda). 2018-8-30

[7]
The genetic basis and evolution of red blood cell sickling in deer.

Nat Ecol Evol. 2017-12-18

[8]
Near-optimal probabilistic RNA-seq quantification.

Nat Biotechnol. 2016-4-4

本文引用的文献

[1]
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.

Genome Biol. 2014

[2]
A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium.

Nat Biotechnol. 2014-9

[3]
Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms.

Nat Biotechnol. 2014-5

[4]
voom: Precision weights unlock linear model analysis tools for RNA-seq read counts.

Genome Biol. 2014-2-3

[5]
Streaming fragment assignment for real-time analysis of sequencing experiments.

Nat Methods. 2012-11-18

[6]
A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis.

Brief Bioinform. 2012-9-17

[7]
Modelling and simulating generic RNA-Seq experiments with the flux simulator.

Nucleic Acids Res. 2012-9-7

[8]
A strand-specific library preparation protocol for RNA sequencing.

Methods Enzymol. 2011

[9]
RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome.

BMC Bioinformatics. 2011-8-4

[10]
Estimation of alternative splicing isoform frequencies from RNA-Seq data.

Algorithms Mol Biol. 2011-4-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索