Institute of Human Virology, Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
J Am Chem Soc. 2011 Sep 14;133(36):14404-17. doi: 10.1021/ja204831z. Epub 2011 Aug 19.
A detailed understanding of the molecular mechanism of chaperone-assisted protein quality control is often hampered by the lack of well-defined homogeneous glycoprotein probes. We describe here a highly convergent chemoenzymatic synthesis of the monoglucosylated glycoforms of bovine ribonuclease (RNase) as specific ligands of lectin-like chaperones calnexin (CNX) and calreticulin (CRT) that are known to recognize the monoglucosylated high-mannose oligosaccharide component of glycoproteins in protein folding. The synthesis of a selectively modified glycoform Gal(1)Glc(1)Man(9)GlcNAc(2)-RNase was accomplished by chemical synthesis of a large N-glycan oxazoline and its subsequent enzymatic ligation to GlcNAc-RNase under the catalysis of a glycosynthase. Selective removal of the terminal galactose by a β-galactosidase gave the Glc(1)Man(9)GlcNAc(2)-RNase glycoform in excellent yield. CD spectroscopic analysis and RNA-hydrolyzing assay indicated that the synthetic RNase glycoforms maintained essentially the same global conformations and were fully active as the natural bovine ribonuclease B. SPR binding studies revealed that the Glc(1)Man(9)GlcNAc(2)-RNase had high affinity to lectin CRT, while the synthetic Man(9)GlcNAc(2)-RNase glycoform and natural RNase B did not show CRT-binding activity. These results confirmed the essential role of the glucose moiety in the chaperone molecular recognition. Interestingly, the galactose-masked glycoform Gal(1)Glc(1)Man(9)GlcNAc(2)-RNase also showed significant affinity to lectin CRT, suggesting that a galactose β-1,4-linked to the key glucose moiety does not significantly block the lectin binding. These synthetic homogeneous glycoprotein probes should be valuable for a detailed mechanistic study on how molecular chaperones work in concert to distinguish between misfolded and folded glycoproteins in the protein quality control cycle.
对伴侣蛋白协助的蛋白质质量控制的分子机制的深入了解常常受到缺乏定义明确的均一糖蛋白探针的阻碍。我们在这里描述了牛核糖核酸酶(RNase)单葡糖基化糖型的高度会聚的化学酶合成,作为已知识别糖蛋白折叠中糖基化的高甘露糖寡糖成分的凝集素样伴侣蛋白 calnexin(CNX)和 calreticulin(CRT)的特异性配体。通过化学合成大的 N-聚糖恶唑啉及其在糖苷合成酶催化下与 GlcNAc-RNase 的酶促连接,完成了选择性修饰的糖型 Gal(1)Glc(1)Man(9)GlcNAc(2)-RNase 的合成。通过β-半乳糖苷酶选择性去除末端半乳糖,以优异的产率得到 Glc(1)Man(9)GlcNAc(2)-RNase 糖型。CD 光谱分析和 RNA 水解测定表明,合成的 RNase 糖型保持了基本相同的整体构象,并且与天然牛核糖核酸酶 B 一样具有完全的活性。SPR 结合研究表明,Glc(1)Man(9)GlcNAc(2)-RNase 与凝集素 CRT 具有高亲和力,而合成的 Man(9)GlcNAc(2)-RNase 糖型和天然 RNase B 则没有 CRT 结合活性。这些结果证实了葡萄糖部分在伴侣蛋白分子识别中的重要作用。有趣的是,被半乳糖掩盖的糖型 Gal(1)Glc(1)Man(9)GlcNAc(2)-RNase 也对凝集素 CRT 表现出显著的亲和力,这表明与关键葡萄糖部分连接的β-1,4-连接的半乳糖基团不会显著阻止凝集素结合。这些合成的均一糖蛋白探针对于详细研究分子伴侣如何协同作用以区分蛋白质质量控制循环中错误折叠和折叠的糖蛋白的机制应该是有价值的。