Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel.
J Am Chem Soc. 2011 Oct 5;133(39):15514-23. doi: 10.1021/ja204291d. Epub 2011 Sep 9.
The RNA helicase DbpA promotes RNA remodeling coupled to ATP hydrolysis. It is unique because of its specificity to hairpin 92 of 23S rRNA (HP92). Although DbpA kinetic pathways leading to ATP hydrolysis and RNA unwinding have been recently elucidated, the molecular (atomic) basis for the coupling of ATP hydrolysis to RNA remodeling remains unclear. This is, in part, due to the lack of detailed structural information on the ATPase site in the presence and absence of RNA in solution. We used high-field pulse ENDOR (electron-nuclear double resonance) spectroscopy to detect and analyze fine conformational changes in the protein's ATPase site in solution. Specifically, we substituted the essential Mg(2+) cofactor in the ATPase active site for paramagnetic Mn(2+) and determined its close environment with different nucleotides (ADP, ATP, and the ATP analogues ATPγS and AMPPnP) in complex with single- and double-stranded RNA. We monitored the Mn(2+) interactions with the nucleotide phosphates through the (31)P hyperfine couplings and the coordination by protein residues through (13)C hyperfine coupling from (13)C-enriched DbpA. We observed that the nucleotide binding site of DbpA adopts different conformational states upon binding of different nucleotides. The ENDOR spectra revealed a clear distinction between hydrolyzable and nonhydrolyzable nucleotides prior to RNA binding. Furthermore, both the (13)C and the (31)P ENDOR spectra were found to be highly sensitive to changes in the local environment of the Mn(2+) ion induced by the hydrolysis. More specifically, ATPγS was efficiently hydrolyzed upon binding of RNA, similar to ATP. Importantly, the Mn(2+) cofactor remains bound to a single protein side chain and to one or two nucleotide phosphates in all complexes, whereas the remaining metal coordination positions are occupied by water. The conformational changes in the protein's ATPase active site associated with the different DbpA states occur in remote coordination shells of the Mn(2+) ion. Finally, a competitive Mn(2+) binding site was found for single-stranded RNA construct.
RNA 解旋酶 DbpA 促进与 ATP 水解偶联的 RNA 重排。它的独特之处在于它对 23S rRNA 发夹 92(HP92)的特异性。尽管最近已经阐明了导致 ATP 水解和 RNA 解旋的 DbpA 动力学途径,但 ATP 水解与 RNA 重排偶联的分子(原子)基础仍不清楚。部分原因是缺乏溶液中存在和不存在 RNA 时 ATP 酶位点的详细结构信息。我们使用高场脉冲 ENDOR(电子-核双共振)光谱法来检测和分析溶液中蛋白质 ATP 酶位点的精细构象变化。具体来说,我们用顺磁 Mn(2+)取代 ATP 酶活性位点中的必需 Mg(2+)辅助因子,并使用单链和双链 RNA 与不同核苷酸(ADP、ATP、ATP 类似物 ATPγS 和 AMPPnP)结合来确定其近环境。我们通过 (31)P 超精细耦合监测 Mn(2+)与核苷酸磷酸的相互作用,并通过 (13)C 超精细耦合从 (13)C 富集的 DbpA 监测蛋白残基的配位。我们观察到,在结合不同核苷酸时,DbpA 的核苷酸结合位点会采用不同的构象状态。在结合 RNA 之前,ENDOR 光谱在可水解和不可水解核苷酸之间显示出明显的区别。此外,(13)C 和 (31)P ENDOR 光谱都被发现对水解诱导的 Mn(2+)离子局部环境的变化非常敏感。更具体地说,类似于 ATP,RNA 结合后,ATPγS 被有效地水解。重要的是,Mn(2+)辅助因子仍然与单个蛋白侧链和一个或两个核苷酸磷酸结合,而其余的金属配位位置被水占据。与不同 DbpA 状态相关的蛋白质 ATP 酶活性位点的构象变化发生在 Mn(2+)离子的远程配位壳中。最后,发现了一个用于单链 RNA 结构的竞争性 Mn(2+)结合位点。