Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.
Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):5945-50. doi: 10.1073/pnas.1303376110. Epub 2013 Mar 27.
The remarkable ability of bacterium Deinococcus radiodurans to survive extreme doses of γ-rays (12,000 Gy), 20 times greater than Escherichia coli, is undiminished by loss of Mn-dependent superoxide dismutase (SodA). D. radiodurans radiation resistance is attributed to the accumulation of low-molecular-weight (LMW) "antioxidant" Mn(2+)-metabolite complexes that protect essential enzymes from oxidative damage. However, in vivo information about such complexes within D. radiodurans cells is lacking, and the idea that they can supplant reactive-oxygen-species (ROS)-scavenging enzymes remains controversial. In this report, measurements by advanced paramagnetic resonance techniques [electron-spin-echo (ESE)-EPR/electron nuclear double resonance/ESE envelope modulation (ESEEM)] reveal differential details of the in vivo Mn(2+) speciation in D. radiodurans and E. coli cells and their responses to 10 kGy γ-irradiation. The Mn(2+) of D. radiodurans exists predominantly as LMW complexes with nitrogenous metabolites and orthophosphate, with negligible EPR signal from Mn(2+) of SodA. Thus, the extreme radiation resistance of D. radiodurans cells cannot be attributed to SodA. Correspondingly, 10 kGy irradiation causes no change in D. radiodurans Mn(2+) speciation, despite the paucity of holo-SodA. In contrast, the EPR signal of E. coli is dominated by signals from low-symmetry enzyme sites such as that of SodA, with a minority pool of LMW Mn(2+) complexes that show negligible coordination by nitrogenous metabolites. Nonetheless, irradiation of E. coli majorly changes LMW Mn(2+) speciation, with extensive binding of nitrogenous ligands created by irradiation. We infer that E. coli is highly susceptible to radiation-induced ROS because it lacks an adequate supply of LMW Mn antioxidants.
耐辐射球菌具有非凡的能力,可以承受高达 12000Gy 的γ射线,比大肠杆菌高 20 倍,而锰依赖性超氧化物歧化酶(SodA)的缺失并不能削弱其辐射抗性。耐辐射球菌的辐射抗性归因于低分子量(LMW)“抗氧化剂”Mn(2+)代谢物复合物的积累,这些复合物可以保护关键酶免受氧化损伤。然而,关于耐辐射球菌细胞内此类复合物的体内信息仍然缺乏,而且认为它们可以替代活性氧(ROS)清除酶的观点仍然存在争议。在本报告中,通过先进的顺磁共振技术[电子自旋回波(ESE)-电子核双共振/ESE 包络调制(ESEEM)]的测量,揭示了耐辐射球菌和大肠杆菌细胞中体内 Mn(2+)形态的差异细节,以及它们对 10kGyγ辐照的反应。耐辐射球菌的 Mn(2+)主要以 LMW 复合物的形式存在,与含氮代谢物和正磷酸盐结合,而 SodA 的 Mn(2+)几乎没有 EPR 信号。因此,耐辐射球菌细胞的极端辐射抗性不能归因于 SodA。相应地,尽管缺乏完整的 SodA,10kGy 的辐照不会引起耐辐射球菌 Mn(2+)形态的变化。相比之下,大肠杆菌的 EPR 信号主要由 SodA 等低对称酶位点的信号主导,存在少数 LMW Mn(2+)复合物,其配位几乎没有氮代谢物。尽管如此,大肠杆菌的辐照主要改变了 LMW Mn(2+)形态,形成了大量由辐照产生的氮配体。我们推断,由于缺乏足够的 LMW Mn 抗氧化剂,大肠杆菌对辐射诱导的 ROS 非常敏感。