Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States.
Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.
J Am Chem Soc. 2017 Feb 8;139(5):1984-1997. doi: 10.1021/jacs.6b11856. Epub 2017 Jan 25.
In enzymatic C-H activation by hydrogen tunneling, reduced barrier width is important for efficient hydrogen wave function overlap during catalysis. For native enzymes displaying nonadiabatic tunneling, the dominant reactive hydrogen donor-acceptor distance (DAD) is typically ca. 2.7 Å, considerably shorter than normal van der Waals distances. Without a ground state substrate-bound structure for the prototypical nonadiabatic tunneling system, soybean lipoxygenase (SLO), it has remained unclear whether the requisite close tunneling distance occurs through an unusual ground state active site arrangement or by thermally sampling conformational substates. Herein, we introduce Mn as a spin-probe surrogate for the SLO Fe ion; X-ray diffraction shows Mn-SLO is structurally faithful to the native enzyme. C ENDOR then reveals the locations of C10 and reactive C11 of linoleic acid relative to the metal; H ENDOR and molecular dynamics simulations of the fully solvated SLO model using ENDOR-derived restraints give additional metrical information. The resulting three-dimensional representation of the SLO active site ground state contains a reactive (a) conformer with hydrogen DAD of ∼3.1 Å, approximately van der Waals contact, plus an inactive (b) conformer with even longer DAD, establishing that stochastic conformational sampling is required to achieve reactive tunneling geometries. Tunneling-impaired SLO variants show increased DADs and variations in substrate positioning and rigidity, confirming previous kinetic and theoretical predictions of such behavior. Overall, this investigation highlights the (i) predictive power of nonadiabatic quantum treatments of proton-coupled electron transfer in SLO and (ii) sensitivity of ENDOR probes to test, detect, and corroborate kinetically predicted trends in active site reactivity and to reveal unexpected features of active site architecture.
在通过氢隧穿实现的酶促 C-H 活化中,较小的势垒宽度对于催化过程中氢波函数的有效重叠很重要。对于显示非绝热隧穿的天然酶,主导的反应性氢供体-受体距离(DAD)通常约为 2.7 Å,明显短于正常的范德华距离。由于没有原型非绝热隧穿体系——大豆脂氧合酶(SLO)的基态底物结合结构,因此仍不清楚所需的紧密隧穿距离是通过不寻常的基态活性位点排列还是通过热采样构象亚稳态来实现。在此,我们引入 Mn 作为 SLO Fe 离子的自旋探针替代物;X 射线衍射表明 Mn-SLO 在结构上与天然酶保持一致。C ENDOR 然后揭示了亚油酸的 C10 和反应性 C11 相对于金属的位置;H ENDOR 和使用 ENDOR 衍生约束对完全溶剂化的 SLO 模型进行分子动力学模拟提供了额外的度量信息。由此得到的 SLO 活性位点基态的三维表示包含具有约 3.1 Å 的氢 DAD 的反应性(a)构象,接近范德华接触,以及具有更长 DAD 的非活性(b)构象,证明需要随机构象采样来实现反应性隧穿几何形状。隧穿受损的 SLO 变体显示出较大的 DAD 以及底物定位和刚性的变化,这证实了先前对这种行为的动力学和理论预测。总的来说,这项研究强调了(i)非绝热量子处理在 SLO 中质子偶联电子转移的预测能力,以及(ii)ENDOR 探针的敏感性,可以用于测试、检测和证实动力学预测的活性位点反应性趋势,并揭示活性位点结构的意外特征。