Department of Bioengineering and California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA.
Biomaterials. 2011 Nov;32(31):7913-23. doi: 10.1016/j.biomaterials.2011.07.005. Epub 2011 Aug 5.
Glioblastoma multiforme (GBM) is a malignant brain tumor characterized by diffuse infiltration of single cells into the brain parenchyma, which is a process that relies in part on aberrant biochemical and biophysical interactions between tumor cells and the brain extracellular matrix (ECM). A major obstacle to understanding ECM regulation of GBM invasion is the absence of model matrix systems that recapitulate the distinct composition and physical structure of brain ECM while allowing independent control of adhesive ligand density, mechanics, and microstructure. To address this need, we synthesized brain-mimetic ECMs based on hyaluronic acid (HA) with a range of stiffnesses that encompasses normal and tumorigenic brain tissue and functionalized these materials with short Arg-Gly-Asp (RGD) peptides to facilitate cell adhesion. Scanning electron micrographs of the hydrogels revealed a dense, sheet-like microstructure with apparent nanoscale porosity similar to brain extracellular space. On flat hydrogel substrates, glioma cell spreading area and actin stress fiber assembly increased strongly with increasing density of RGD peptide. Increasing HA stiffness under constant RGD density produced similar trends and increased the speed of random motility. In a three-dimensional (3D) spheroid paradigm, glioma cells invaded HA hydrogels with morphological patterns distinct from those observed on flat surfaces or in 3D collagen-based ECMs but highly reminiscent of those seen in brain slices. This material system represents a brain-mimetic model ECM with tunable ligand density and stiffness amenable to investigations of the mechanobiological regulation of brain tumor progression.
多形性胶质母细胞瘤(GBM)是一种恶性脑肿瘤,其特征是单个细胞弥漫性浸润脑实质,这一过程部分依赖于肿瘤细胞与脑细胞外基质(ECM)之间异常的生化和生物物理相互作用。理解 ECM 对 GBM 侵袭的调控的一个主要障碍是缺乏模型基质系统,这些系统可以再现脑 ECM 的独特组成和物理结构,同时允许对粘附配体密度、力学和微结构进行独立控制。为了解决这一需求,我们合成了基于透明质酸(HA)的脑模拟 ECM,其硬度范围涵盖了正常和致瘤性脑组织,并对这些材料进行了短 Arg-Gly-Asp(RGD)肽的功能化,以促进细胞黏附。水凝胶的扫描电子显微镜图像显示出一种密集的、片状的微观结构,具有明显的纳米级孔隙率,类似于脑细胞外空间。在平坦的水凝胶基底上,随着 RGD 肽密度的增加,神经胶质瘤细胞的铺展面积和肌动蛋白应力纤维组装大大增加。在恒定 RGD 密度下增加 HA 硬度会产生类似的趋势,并增加随机运动的速度。在三维(3D)球体模型中,神经胶质瘤细胞在 HA 水凝胶中侵袭,其形态模式与在平坦表面或 3D 胶原基 ECM 上观察到的模式明显不同,但与在脑切片中观察到的模式非常相似。这种材料系统代表了一种具有可调配体密度和硬度的脑模拟模型 ECM,适用于研究脑肿瘤进展的力学生物学调控。