Suppr超能文献

从分子信号激活到运动:在明确基质上对细胞运动进行综合的多尺度分析。

From molecular signal activation to locomotion: an integrated, multiscale analysis of cell motility on defined matrices.

机构信息

Department of Bioengineering, University of California, Berkeley, California, United States of America.

出版信息

PLoS One. 2011 Mar 31;6(3):e18423. doi: 10.1371/journal.pone.0018423.

Abstract

The adhesion, mechanics, and motility of eukaryotic cells are highly sensitive to the ligand density and stiffness of the extracellular matrix (ECM). This relationship bears profound implications for stem cell engineering, tumor invasion and metastasis. Yet, our quantitative understanding of how ECM biophysical properties, mechanotransductive signals, and assembly of contractile and adhesive structures collude to control these cell behaviors remains extremely limited. Here we present a novel multiscale model of cell migration on ECMs of defined biophysical properties that integrates local activation of biochemical signals with adhesion and force generation at the cell-ECM interface. We capture the mechanosensitivity of individual cellular components by dynamically coupling ECM properties to the activation of Rho and Rac GTPases in specific portions of the cell with actomyosin contractility, cell-ECM adhesion bond formation and rupture, and process extension and retraction. We show that our framework is capable of recreating key experimentally-observed features of the relationship between cell migration and ECM biophysical properties. In particular, our model predicts for the first time recently reported transitions from filopodial to "stick-slip" to gliding motility on ECMs of increasing stiffness, previously observed dependences of migration speed on ECM stiffness and ligand density, and high-resolution measurements of mechanosensitive protrusion dynamics during cell motility we newly obtained for this study. It also relates the biphasic dependence of cell migration speed on ECM stiffness to the tendency of the cell to polarize. By enabling the investigation of experimentally-inaccessible microscale relationships between mechanotransductive signaling, adhesion, and motility, our model offers new insight into how these factors interact with one another to produce complex migration patterns across a variety of ECM conditions.

摘要

真核细胞的黏附、力学和运动性对细胞外基质 (ECM) 中配体密度和刚度高度敏感。这种关系对干细胞工程、肿瘤侵袭和转移具有深远的意义。然而,我们对 ECM 生物物理特性、力学转导信号以及收缩和黏附结构的组装如何协同控制这些细胞行为的定量理解仍然非常有限。在这里,我们提出了一种新的细胞在具有明确生物物理特性的 ECM 上迁移的多尺度模型,该模型将局部生物化学信号的激活与细胞-ECM 界面处的黏附和力的产生相结合。我们通过动态地将 ECM 特性与 Rho 和 Rac GTPases 在细胞特定部分的激活、肌动球蛋白收缩、细胞-ECM 黏附键的形成和断裂以及过程的延伸和缩回相耦合,来捕捉单个细胞成分的力学敏感性。我们表明,我们的框架能够重现细胞迁移与 ECM 生物物理特性之间关系的关键实验观察特征。特别是,我们的模型首次预测了从丝状伪足到“黏滑”到在刚度不断增加的 ECM 上的滑动运动的转变,以前观察到的迁移速度对 ECM 刚度和配体密度的依赖性,以及我们在这项研究中为新获得的高分辨率的细胞运动过程中机械敏感突起动力学的测量。它还将细胞迁移速度对 ECM 刚度的双相依赖性与细胞极化的趋势联系起来。通过研究实验上无法获得的力学转导信号、黏附和运动之间的微观关系,我们的模型为这些因素如何相互作用产生各种 ECM 条件下复杂的迁移模式提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77b0/3069105/f41d04a440f9/pone.0018423.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验