Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Am J Physiol Heart Circ Physiol. 2011 Oct;301(4):H1695-705. doi: 10.1152/ajpheart.00276.2011. Epub 2011 Aug 5.
Intermittent hypobaric hypoxia (IHH) protects hearts against ischemia-reperfusion (I/R) injury, but the underlying mechanisms are far from clear. ROS are paradoxically regarded as a major cause of myocardial I/R injury and a trigger of cardioprotection. In the present study, we investigated whether the ROS generated during early reperfusion contribute to IHH-induced cardioprotection. Using isolated perfused rat hearts, we found that IHH significantly improved the postischemic recovery of left ventricular (LV) contractile function with a concurrent reduction of lactate dehydrogenase release and myocardial infarct size (20.5 ± 5.3% in IHH vs. 42.1 ± 3.8% in the normoxic control, P < 0.01) after I/R. Meanwhile, IHH enhanced the production of protein carbonyls and malondialdehyde, respective products of protein oxidation and lipid peroxidation, in the reperfused myocardium and ROS generation in reperfused cardiomyocytes. Such effects were blocked by the mitochondrial ATP-sensitive K(+) channel inhibitor 5-hydroxydecanoate. Moreover, the IHH-improved postischemic LV performance, enhanced phosphorylation of PKB (Akt), PKC-ε, and glycogen synthase kinase-3β, as well as translocation of PKC-ε were not affected by applying H(2)O(2) (20 μmol/l) during early reperfusion but were abolished by the ROS scavengers N-(2-mercaptopropionyl)glycine (MPG) and manganese (III) tetrakis (1-methyl-4-pyridyl)porphyrin. Furthermore, IHH-reduced lactate dehydrogenase release and infarct size were reversed by MPG. Consistently, inhibition of Akt with wortmannin and PKC-ε with εV1-2 abrogated the IHH-improved postischemic LV performance. These findings suggest that IHH-induced cardioprotection depends on elevated ROS production during early reperfusion.
间歇性低氧(IHH)可保护心脏免受缺血再灌注(I/R)损伤,但其中的机制尚不清楚。ROS 被认为是心肌 I/R 损伤的主要原因,也是心脏保护的触发因素。在本研究中,我们研究了再灌注早期产生的 ROS 是否有助于 IHH 诱导的心脏保护。使用分离的灌注大鼠心脏,我们发现 IHH 可显著改善缺血后左心室(LV)收缩功能的恢复,同时降低乳酸脱氢酶释放和心肌梗死面积(IHH 组为 20.5±5.3%,常氧对照组为 42.1±3.8%,P<0.01)。同时,IHH 增强了再灌注心肌中蛋白质羰基和丙二醛的产生,分别是蛋白质氧化和脂质过氧化的产物,以及再灌注心肌细胞中 ROS 的产生。这些作用被线粒体 ATP 敏感钾(K+)通道抑制剂 5-羟基癸酸酯阻断。此外,在再灌注早期应用 H2O2(20 μmol/L)不会影响 IHH 改善缺血后 LV 性能、增强 PKB(Akt)、PKC-ε 和糖原合酶激酶-3β的磷酸化以及 PKC-ε 的易位,但会被 ROS 清除剂 N-(2-巯基丙酰基)甘氨酸(MPG)和锰(III)四(1-甲基-4-吡啶基)卟啉所阻断。此外,MPG 逆转了 IHH 减少的乳酸脱氢酶释放和梗死面积。一致地,wortmannin 抑制 Akt 和 εV1-2 抑制 PKC-ε 消除了 IHH 改善缺血后 LV 性能。这些发现表明,IHH 诱导的心脏保护依赖于再灌注早期 ROS 的产生增加。