DePaul University, USA.
J Clin Psychol. 2012 Jan;68(1):41-9. doi: 10.1002/jclp.20827. Epub 2011 Aug 5.
This article contrasts two case definitions for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). We compared the empiric CFS case definition (Reeves et al., 2005) and the Canadian ME/CFS clinical case definition (Carruthers et al., 2003) with a sample of individuals with CFS versus those without. Data mining with decision trees was used to identify the best items to identify patients with CFS. Data mining is a statistical technique that was used to help determine which of the survey questions were most effective for accurately classifying cases. The empiric criteria identified about 79% of patients with CFS and the Canadian criteria identified 87% of patients. Items identified by the Canadian criteria had more construct validity. The implications of these findings are discussed.
本文对比了两种肌痛性脑脊髓炎/慢性疲劳综合征(ME/CFS)的病例定义。我们将 Reeves 等人(2005 年)提出的经验性慢性疲劳综合征病例定义与 Carruthers 等人(2003 年)提出的加拿大 ME/CFS 临床病例定义进行了比较,比较的对象是一组慢性疲劳综合征患者和非慢性疲劳综合征患者。我们使用决策树数据挖掘来确定识别慢性疲劳综合征患者的最佳项目。数据挖掘是一种统计技术,用于帮助确定调查问题中哪些最有效,从而准确地对病例进行分类。经验性标准确定了约 79%的慢性疲劳综合征患者,加拿大标准确定了 87%的患者。加拿大标准确定的项目具有更高的结构有效性。这些发现的意义将在讨论中阐述。