Zhang Haijun, Liu Gang, Chow Tommy W S, Liu Wenyin
Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong.
IEEE Trans Neural Netw. 2011 Oct;22(10):1532-46. doi: 10.1109/TNN.2011.2161999. Epub 2011 Aug 4.
A novel framework using a Bayesian approach for content-based phishing web page detection is presented. Our model takes into account textual and visual contents to measure the similarity between the protected web page and suspicious web pages. A text classifier, an image classifier, and an algorithm fusing the results from classifiers are introduced. An outstanding feature of this paper is the exploration of a Bayesian model to estimate the matching threshold. This is required in the classifier for determining the class of the web page and identifying whether the web page is phishing or not. In the text classifier, the naive Bayes rule is used to calculate the probability that a web page is phishing. In the image classifier, the earth mover's distance is employed to measure the visual similarity, and our Bayesian model is designed to determine the threshold. In the data fusion algorithm, the Bayes theory is used to synthesize the classification results from textual and visual content. The effectiveness of our proposed approach was examined in a large-scale dataset collected from real phishing cases. Experimental results demonstrated that the text classifier and the image classifier we designed deliver promising results, the fusion algorithm outperforms either of the individual classifiers, and our model can be adapted to different phishing cases.
提出了一种使用贝叶斯方法进行基于内容的网络钓鱼网页检测的新颖框架。我们的模型考虑文本和视觉内容来衡量受保护网页与可疑网页之间的相似度。介绍了一个文本分类器、一个图像分类器以及融合分类器结果的算法。本文的一个突出特点是探索了一种贝叶斯模型来估计匹配阈值。这在用于确定网页类别并识别该网页是否为网络钓鱼的分类器中是必需的。在文本分类器中,朴素贝叶斯规则用于计算网页是网络钓鱼的概率。在图像分类器中,使用推土机距离来衡量视觉相似度,并且我们的贝叶斯模型用于确定阈值。在数据融合算法中,贝叶斯理论用于综合来自文本和视觉内容的分类结果。我们提出的方法的有效性在从真实网络钓鱼案例收集的大规模数据集中进行了检验。实验结果表明,我们设计的文本分类器和图像分类器都给出了有前景的结果,融合算法优于任何一个单独的分类器,并且我们的模型可以适应不同的网络钓鱼案例。