Department of Bioengineering, Cancer Institute, Bio-X Program, Stanford University, Stanford, CA 94305, USA.
Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14067-72. doi: 10.1073/pnas.1016635108. Epub 2011 Aug 8.
Significant cross-talk exists between receptors that mediate angiogenesis, such as VEGF receptor-2 (VEGFR2) and α(v)β(3) integrin. Thus, agents that inhibit both receptors would have important therapeutic potential. Here, we used an antagonistic VEGF ligand as a molecular scaffold to engineer dual-specific proteins that bound to VEGFR2 and α(v)β(3) integrin with antibody-like affinities and inhibited angiogenic processes in vitro and in vivo. Mutations were introduced into a single-chain VEGF (scVEGF) ligand that retained VEGFR2 binding, but prevented receptor dimerization and activation. Yeast-displayed scVEGF mutant libraries were created and screened by high-throughput flow cytometric sorting to identify several variants that bound with high affinity to both VEGFR2 and α(v)β(3) integrin. These engineered scVEGF mutants were specific for α(v)β(3) integrin and did not bind to the related integrins α(v)β(5), α(iib)β(3), or α(5)β(1). In addition, surface plasmon resonance and cell binding assays showed that dual-specific scVEGF proteins can simultaneously engage both receptors. Compared to monospecific scVEGF mutants that bind VEGFR2 or α(v)β(3) integrin, dual-specific scVEGF proteins more strongly inhibited VEGF-mediated receptor phosphorylation, capillary tube formation, and proliferation of endothelial cells cultured on Matrigel or vitronectin-coated surfaces. Moreover, dual specificity conferred strong inhibition of VEGF-mediated blood vessel formation in Matrigel plugs in vivo, whereas monospecific scVEGF mutants that bind VEGFR2 or α(v)β(3) integrin were only marginally effective. Instead of relying on antibody associating domains or physical linkage, this work highlights an approach to creating dual-specific proteins where additional functionality is introduced into a protein ligand to complement its existing biological properties.
存在着血管生成介质受体之间的显著串扰,如血管内皮生长因子受体-2(VEGFR2)和α(v)β(3)整合素。因此,抑制这两种受体的药物将具有重要的治疗潜力。在这里,我们使用一种拮抗血管内皮生长因子配体作为分子支架,设计了能够结合 VEGFR2 和α(v)β(3)整合素的双特异性蛋白,这些蛋白在体外和体内均能抑制血管生成过程。我们对保留了 VEGFR2 结合能力但阻止受体二聚化和激活的单链血管内皮生长因子(scVEGF)配体进行了突变。利用高通量流式细胞术分选,创建并筛选酵母展示的 scVEGF 突变文库,以鉴定出几种能高亲和力结合 VEGFR2 和α(v)β(3)整合素的变体。这些工程化的 scVEGF 突变体特异性结合α(v)β(3)整合素,而不与相关整合素α(v)β(5)、α(iib)β(3)或α(5)β(1)结合。此外,表面等离子体共振和细胞结合试验表明,双特异性 scVEGF 蛋白可同时结合两种受体。与只结合 VEGFR2 或α(v)β(3)整合素的单特异性 scVEGF 突变体相比,双特异性 scVEGF 蛋白更能强烈抑制 VEGF 介导的受体磷酸化、毛细血管管形成和内皮细胞在 Matrigel 或 vitronectin 涂层表面的增殖。此外,双特异性还能强烈抑制体内 Matrigel 塞中 VEGF 介导的血管形成,而只结合 VEGFR2 或α(v)β(3)整合素的单特异性 scVEGF 突变体则只有轻微的效果。与依赖抗体结合域或物理连接不同,这项工作强调了一种创建双特异性蛋白的方法,其中将额外的功能引入蛋白质配体中,以补充其现有的生物学特性。