Zhao Xiongce, Krstic Predrag S
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA.
Nanotechnology. 2008 May 14;19(19):195702. doi: 10.1088/0957-4484/19/19/195702. Epub 2008 Apr 8.
We found by molecular dynamics simulations that a low energy ion can be trapped effectively in a nanoscale Paul trap in both vacuum and aqueous environments when appropriate AC/DC electric fields are applied to the system. Using the negatively charged chlorine ion as an example, we show that the trapped ion oscillates around the center of the nanotrap with an amplitude dependent on the parameters of the system and applied voltages. Successful trapping of the ion within nanoseconds requires an electric bias of GHz frequency, in the range of hundreds of mV. The oscillations are damped in the aqueous environment, but polarization of water molecules requires the application of a higher voltage bias to reach improved stability of the trapping. Application of a supplemental DC driving field along the trap axis can effectively drive the ion off the trap center and out of the trap, opening up the possibility of studying DNA and other charged molecules using embedded probes while achieving a full control of their translocation and localization in the trap.
我们通过分子动力学模拟发现,当对系统施加适当的交流/直流电场时,低能离子在真空和水环境中都能有效地被捕获在纳米级保罗阱中。以带负电荷的氯离子为例,我们表明捕获的离子围绕纳米阱中心振荡,其振幅取决于系统参数和施加的电压。要在纳秒内成功捕获离子,需要频率为吉赫兹、幅度在数百毫伏范围内的电偏压。振荡在水环境中会被衰减,但水分子的极化需要施加更高的电压偏压以实现更好的捕获稳定性。沿阱轴施加一个补充直流驱动场可以有效地将离子驱离阱中心并使其离开阱,这为利用嵌入式探针研究DNA和其他带电分子开辟了可能性,同时能够完全控制它们在阱中的易位和定位。