Department of Electrical Engineering, Yale University, New Haven, CT 06520, USA.
Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9326-30. doi: 10.1073/pnas.1100977108. Epub 2011 May 23.
We experimentally demonstrate the feasibility of an aqueous Paul trap using a proof-of-principle planar device. Radio frequency voltages are used to generate an alternating focusing/defocusing potential well in two orthogonal directions. Individual charged particles are dynamically confined into nanometer scale in space. Compared with conventional Paul traps working in frictionless vacuum, the aqueous environment associated with damping forces and thermally induced fluctuations (Brownian noise) exerts a fundamental influence on the underlying physics. We investigate the impact of these two effects on the confining dynamics, with the aim to reduce the rms value of the positional fluctuations. We find that the rms fluctuations can be modulated by adjusting the voltages and frequencies. This technique provides an alternative for the localization and control of charged particles in an aqueous environment.
我们通过一个原理验证的平面设备,实验证明了用水做的 Paul 阱的可行性。射频电压用于在两个正交方向上产生交替的聚焦/散焦势阱。单个带电粒子在纳米尺度的空间中被动态约束。与在无摩擦真空环境中工作的传统 Paul 阱相比,与阻尼力和热诱导波动(布朗噪声)相关的水介质环境对基础物理产生了根本影响。我们研究了这两种效应对约束动力学的影响,目的是降低位置波动的均方根值。我们发现通过调整电压和频率可以调制均方根波动。这项技术为在水介质环境中定位和控制带电粒子提供了一种替代方法。