Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA.
J Biomol NMR. 2011 Nov;51(3):293-302. doi: 10.1007/s10858-011-9536-y. Epub 2011 Aug 9.
Magic-angle spinning solid-state NMR measurements of (15)N longitudinal paramagnetic relaxation enhancements (PREs) in (13)C,(15)N-labeled proteins modified with Cu(2+)-chelating tags can yield multiple long-range electron-nucleus distance restraints up to ~20 Å (Nadaud et al. in J Am Chem Soc 131:8108-8120, 2009). Using the EDTA-Cu(2+) K28C mutant of B1 immunoglobulin binding domain of protein G (GB1) as a model, we investigate the effects on such measurements of intermolecular electron-nucleus couplings and intrinsic metal binding sites, both of which may potentially complicate the interpretation of PRE data in terms of the intramolecular protein fold. To quantitatively assess the influence of intermolecular (15)N-Cu(2+) interactions we have determined a nearly complete set of longitudinal (15)N PREs for a series of microcrystalline samples containing ~10, 15 and 25 mol percent of the (13)C,(15)N-labeled EDTA-Cu(2+)-tagged protein diluted in a matrix of diamagnetic natural abundance GB1. The residual intermolecular interactions were found to be minor on the whole and account for only a fraction of the relatively small but systematic deviations observed between the experimental (15)N PREs and corresponding values calculated using protein structural models for residues furthest removed from the EDTA-Cu(2+) tag. This suggests that these deviations are also caused in part by other factors not related to the protein structure, such as the presence in the protein of intrinsic secondary sites capable of binding Cu(2+) ions. To probe this issue we performed a Cu(2+) titration study for K28C-EDTA GB1 monitored by 2D (15)N-(1)H solution-state NMR, which revealed that while for Cu(2+):protein molar ratios of ≤ 1.0 Cu(2+) binds primarily to the high-affinity EDTA tag, as anticipated, at even slightly super-stoichiometric ratios the Cu(2+) ions can also associate with side-chains of aspartate and glutamate residues. This in turn is expected to lead to enhanced PREs for residues located in the vicinity of the secondary Cu(2+) binding sites, and indeed many of these residues were ones found to display the elevated longitudinal (15)N PREs in the solid phase.
利用(13)C,(15)N 标记的 Cu(2+)螯合标签修饰的(15)N 纵向顺磁弛豫增强(PRE)的魔角旋转固态 NMR 测量,可以得到多达20 Å 的多个远程电子-核距离约束(Nadaud 等人,J Am Chem Soc 131:8108-8120,2009)。以 B1 免疫球蛋白结合域蛋白 G(GB1)的 EDTA-Cu(2+)K28C 突变体作为模型,我们研究了分子间电子-核偶合和固有金属结合位点对这些测量的影响,这两者都可能使 PRE 数据的解释复杂化,这与蛋白质的分子内折叠有关。为了定量评估分子间(15)N-Cu(2+)相互作用的影响,我们确定了一系列微晶样品中(13)C,(15)N 标记的 EDTA-Cu(2+)标记蛋白的几乎完整的纵向(15)N PRE 集,其中包含10、15 和 25 mol%的标记蛋白,稀释在顺磁性天然丰度 GB1 的基质中。总的来说,发现残留的分子间相互作用很小,仅占观察到的实验(15)N PRE 与使用远离 EDTA-Cu(2+)标签的残基的蛋白质结构模型计算的相应值之间的小但系统的偏差的一小部分。这表明这些偏差也部分是由与蛋白质结构无关的其他因素引起的,例如蛋白质中固有二级位点能够结合 Cu(2+)离子。为了研究这个问题,我们通过二维(15)N-(1)H 溶液态 NMR 监测了 K28C-EDTA GB1 的 Cu(2+)滴定研究,结果表明,尽管对于 Cu(2+):蛋白质摩尔比≤1.0,Cu(2+)主要与高亲和力的 EDTA 标签结合,但即使在稍微超化学计量的比例下,Cu(2+)离子也可以与天冬氨酸和谷氨酸残基的侧链结合。这反过来又预计会导致位于二级 Cu(2+)结合位点附近的残基的 PRE 增强,实际上,许多这些残基是在固相中显示出升高的纵向(15)N PRE 的残基。