Cunningham Timothy F, Putterman Miriam R, Desai Astha, Horne W Seth, Saxena Sunil
Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260 (USA).
Angew Chem Int Ed Engl. 2015 May 18;54(21):6330-4. doi: 10.1002/anie.201501968. Epub 2015 Mar 27.
The development of ESR methods that measure long-range distance distributions has advanced biophysical research. However, the spin labels commonly employed are highly flexible, which leads to ambiguity in relating ESR measurements to protein-backbone structure. Herein we present the double-histidine (dHis) Cu(2+)-binding motif as a rigid spin probe for double electron-electron resonance (DEER) distance measurements. The spin label is assembled in situ from natural amino acid residues and a metal salt, requires no postexpression synthetic modification, and provides distance distributions that are dramatically narrower than those found with the commonly used protein spin label. Simple molecular modeling based on an X-ray crystal structure of an unlabeled protein led to a predicted most probable distance within 0.5 Å of the experimental value. Cu(2+) DEER with the dHis motif shows great promise for the resolution of precise, unambiguous distance constraints that relate directly to protein-backbone structure and flexibility.
能够测量长程距离分布的电子顺磁共振(ESR)方法的发展推动了生物物理研究。然而,常用的自旋标记具有高度的灵活性,这导致在将ESR测量结果与蛋白质主链结构相关联时存在模糊性。在此,我们提出双组氨酸(dHis)铜(II)结合基序作为用于双电子-电子共振(DEER)距离测量的刚性自旋探针。该自旋标记由天然氨基酸残基和金属盐原位组装而成,无需表达后合成修饰,并且提供的距离分布比常用的蛋白质自旋标记所得到的分布显著更窄。基于未标记蛋白质的X射线晶体结构进行的简单分子建模得出的预测最可能距离与实验值相差在0.5埃以内。带有dHis基序的铜(II)DEER在解析与蛋白质主链结构和灵活性直接相关的精确、明确的距离限制方面显示出巨大潜力。