Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
Mol Biotechnol. 2012 Jun;51(2):109-18. doi: 10.1007/s12033-011-9442-2.
Most existing genomic engineering protocols for manipulation of Escherichia coli are primarily focused on chromosomal gene knockout. In this study, a simple but systematic chromosomal gene knock-in method was proposed based on a previously developed protocol using bacteriophage λ (λ Red) and flippase-flippase recognition targets (FLP-FRT) recombinations. For demonstration purposes, DNA operons containing heterologous genes (i.e., pac encoding E. coli penicillin acylase and palB2 encoding Pseudozyma antarctica lipase B mutant) engineered with regulatory elements, such as strong/inducible promoters (i.e., P( trc ) and P( araB )), operators, and ribosomal binding sites, were integrated into the E. coli genome at designated locations (i.e., lacZYA, dbpA, and lacI-mhpR loci) either as a gene replacement or gene insertion using various antibiotic selection markers (i.e., kanamycin and chloramphenicol) under various genetic backgrounds (i.e., HB101 and DH5α). The expression of the inserted foreign genes was subjected to regulation using appropriate inducers [isopropyl β-D: -1-thiogalactopyranoside (IPTG) and arabinose] at tunable concentrations. The developed approach not only enables more extensive genomic engineering of E. coli, but also paves an effective way to "tailor" plasmid-free E. coli strains with desired genotypes suitable for various biotechnological applications, such as biomanufacturing and metabolic engineering.
现有的大多数用于大肠杆菌基因组工程操作的技术主要集中在染色体基因敲除上。在本研究中,基于先前使用噬菌体λ(λ Red)和翻转酶-翻转酶识别靶点(FLP-FRT)重组开发的方案,提出了一种简单但系统的染色体基因敲入方法。为了演示目的,用调控元件(如强/诱导启动子(即 P(trc)和 P(araB))、操纵子和核糖体结合位点)工程化的含有异源基因(即编码大肠杆菌青霉素酰化酶的 pac 和编码假丝酵母脂肪酶 B 突变体的 palB2)的 DNA 操纵子被整合到大肠杆菌基因组中的指定位置(即 lacZYA、dbpA 和 lacI-mhpR 基因座),要么作为基因替换,要么作为基因插入,使用各种抗生素选择标记(即卡那霉素和氯霉素),在不同的遗传背景下(即 HB101 和 DH5α)。插入的外源基因的表达通过使用适当的诱导剂(异丙基 β-D:-1-硫代半乳糖吡喃糖苷(IPTG)和阿拉伯糖)在可调节的浓度下进行调控。该方法不仅能够实现大肠杆菌基因组的更广泛工程化,而且为具有所需基因型的无质粒大肠杆菌菌株“定制”铺平了有效途径,适用于各种生物技术应用,如生物制造和代谢工程。