Pyne Michael E, Moo-Young Murray, Chung Duane A, Chou C Perry
Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada.
Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada Neemo Inc., Hamilton, Ontario, Canada
Appl Environ Microbiol. 2015 Aug;81(15):5103-14. doi: 10.1128/AEM.01248-15. Epub 2015 May 22.
To date, most genetic engineering approaches coupling the type II Streptococcus pyogenes clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system to lambda Red recombineering have involved minor single nucleotide mutations. Here we show that procedures for carrying out more complex chromosomal gene replacements in Escherichia coli can be substantially enhanced through implementation of CRISPR/Cas9 genome editing. We developed a three-plasmid approach that allows not only highly efficient recombination of short single-stranded oligonucleotides but also replacement of multigene chromosomal stretches of DNA with large PCR products. By systematically challenging the proposed system with respect to the magnitude of chromosomal deletion and size of DNA insertion, we demonstrated DNA deletions of up to 19.4 kb, encompassing 19 nonessential chromosomal genes, and insertion of up to 3 kb of heterologous DNA with recombination efficiencies permitting mutant detection by colony PCR screening. Since CRISPR/Cas9-coupled recombineering does not rely on the use of chromosome-encoded antibiotic resistance, or flippase recombination for antibiotic marker recycling, our approach is simpler, less labor-intensive, and allows efficient production of gene replacement mutants that are both markerless and "scar"-less.
迄今为止,大多数将II型化脓性链球菌成簇规律间隔短回文重复序列(CRISPR)/Cas9系统与λ Red重组工程相结合的基因工程方法都涉及微小的单核苷酸突变。在此,我们表明,通过实施CRISPR/Cas9基因组编辑,可显著增强在大肠杆菌中进行更复杂染色体基因替换的程序。我们开发了一种三质粒方法,该方法不仅允许短单链寡核苷酸高效重组,还允许用大的PCR产物替换多基因染色体DNA片段。通过系统地针对染色体缺失大小和DNA插入大小对所提出的系统进行挑战,我们证明了高达19.4 kb的DNA缺失,涵盖19个非必需染色体基因,以及高达3 kb的异源DNA插入,其重组效率允许通过菌落PCR筛选检测突变体。由于CRISPR/Cas9偶联的重组工程不依赖于使用染色体编码的抗生素抗性,也不依赖于用于抗生素标记回收的翻转酶重组,我们的方法更简单,劳动强度更低,并允许高效生产无标记且“无疤痕”的基因替换突变体。