Suppr超能文献

将CRISPR/Cas9系统与λ Red重组工程相结合可实现大肠杆菌中简化的染色体基因替换。

Coupling the CRISPR/Cas9 System with Lambda Red Recombineering Enables Simplified Chromosomal Gene Replacement in Escherichia coli.

作者信息

Pyne Michael E, Moo-Young Murray, Chung Duane A, Chou C Perry

机构信息

Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada.

Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada Neemo Inc., Hamilton, Ontario, Canada

出版信息

Appl Environ Microbiol. 2015 Aug;81(15):5103-14. doi: 10.1128/AEM.01248-15. Epub 2015 May 22.

Abstract

To date, most genetic engineering approaches coupling the type II Streptococcus pyogenes clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system to lambda Red recombineering have involved minor single nucleotide mutations. Here we show that procedures for carrying out more complex chromosomal gene replacements in Escherichia coli can be substantially enhanced through implementation of CRISPR/Cas9 genome editing. We developed a three-plasmid approach that allows not only highly efficient recombination of short single-stranded oligonucleotides but also replacement of multigene chromosomal stretches of DNA with large PCR products. By systematically challenging the proposed system with respect to the magnitude of chromosomal deletion and size of DNA insertion, we demonstrated DNA deletions of up to 19.4 kb, encompassing 19 nonessential chromosomal genes, and insertion of up to 3 kb of heterologous DNA with recombination efficiencies permitting mutant detection by colony PCR screening. Since CRISPR/Cas9-coupled recombineering does not rely on the use of chromosome-encoded antibiotic resistance, or flippase recombination for antibiotic marker recycling, our approach is simpler, less labor-intensive, and allows efficient production of gene replacement mutants that are both markerless and "scar"-less.

摘要

迄今为止,大多数将II型化脓性链球菌成簇规律间隔短回文重复序列(CRISPR)/Cas9系统与λ Red重组工程相结合的基因工程方法都涉及微小的单核苷酸突变。在此,我们表明,通过实施CRISPR/Cas9基因组编辑,可显著增强在大肠杆菌中进行更复杂染色体基因替换的程序。我们开发了一种三质粒方法,该方法不仅允许短单链寡核苷酸高效重组,还允许用大的PCR产物替换多基因染色体DNA片段。通过系统地针对染色体缺失大小和DNA插入大小对所提出的系统进行挑战,我们证明了高达19.4 kb的DNA缺失,涵盖19个非必需染色体基因,以及高达3 kb的异源DNA插入,其重组效率允许通过菌落PCR筛选检测突变体。由于CRISPR/Cas9偶联的重组工程不依赖于使用染色体编码的抗生素抗性,也不依赖于用于抗生素标记回收的翻转酶重组,我们的方法更简单,劳动强度更低,并允许高效生产无标记且“无疤痕”的基因替换突变体。

相似文献

1
Coupling the CRISPR/Cas9 System with Lambda Red Recombineering Enables Simplified Chromosomal Gene Replacement in Escherichia coli.
Appl Environ Microbiol. 2015 Aug;81(15):5103-14. doi: 10.1128/AEM.01248-15. Epub 2015 May 22.
2
Expression of Shewanella frigidimarina fatty acid metabolic genes in E. coli by CRISPR/cas9-coupled lambda Red recombineering.
Biotechnol Lett. 2016 Jan;38(1):117-22. doi: 10.1007/s10529-015-1956-4. Epub 2015 Sep 10.
4
One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces.
Acta Biochim Biophys Sin (Shanghai). 2015 Apr;47(4):231-43. doi: 10.1093/abbs/gmv007. Epub 2015 Mar 3.
5
Enhanced integration of large DNA into E. coli chromosome by CRISPR/Cas9.
Biotechnol Bioeng. 2017 Jan;114(1):172-183. doi: 10.1002/bit.26056. Epub 2016 Aug 5.
6
CRISPR-Cas12a-Assisted Recombineering in Bacteria.
Appl Environ Microbiol. 2017 Aug 17;83(17). doi: 10.1128/AEM.00947-17. Print 2017 Sep 1.
7
8
Construction and functional characterization of an integrative form lambda Red recombineering Escherichia coli strain.
FEMS Microbiol Lett. 2010 Aug 1;309(2):178-83. doi: 10.1111/j.1574-6968.2010.02036.x. Epub 2010 Jun 16.
9
Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system.
Appl Environ Microbiol. 2015 Apr;81(7):2506-14. doi: 10.1128/AEM.04023-14. Epub 2015 Jan 30.

引用本文的文献

3
Study on the framework of ATP energy cycle system in Escherichia coli.
Appl Microbiol Biotechnol. 2025 Feb 12;109(1):42. doi: 10.1007/s00253-024-13350-9.
4
Concise Overview of Methodologies Employed in the Study of Bacterial DNA Replication.
Int J Mol Sci. 2025 Jan 7;26(2):446. doi: 10.3390/ijms26020446.
6
CRISPR-Cas9-based genome-editing technologies in engineering bacteria for the production of plant-derived terpenoids.
Eng Microbiol. 2024 May 28;4(3):100154. doi: 10.1016/j.engmic.2024.100154. eCollection 2024 Sep.
7
Development of a Recombineering System for the Acetogen with Cas9 Counterselection for Markerless Genome Engineering.
ACS Synth Biol. 2024 Aug 16;13(8):2505-2514. doi: 10.1021/acssynbio.4c00253. Epub 2024 Jul 21.
9
The CRISPR/Cas system as an antimicrobial resistance strategy in aquatic ecosystems.
Funct Integr Genomics. 2024 May 28;24(3):110. doi: 10.1007/s10142-024-01362-7.
10
CRISPR-Cas System: A New Dawn to Combat Antibiotic Resistance.
BioDrugs. 2024 May;38(3):387-404. doi: 10.1007/s40259-024-00656-3. Epub 2024 Apr 11.

本文引用的文献

1
One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces.
Acta Biochim Biophys Sin (Shanghai). 2015 Apr;47(4):231-43. doi: 10.1093/abbs/gmv007. Epub 2015 Mar 3.
2
Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system.
J Biotechnol. 2015 Apr 20;200:1-5. doi: 10.1016/j.jbiotec.2015.02.005. Epub 2015 Feb 11.
3
Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system.
Appl Environ Microbiol. 2015 Apr;81(7):2506-14. doi: 10.1128/AEM.04023-14. Epub 2015 Jan 30.
4
A new recombineering system for Photorhabdus and Xenorhabdus.
Nucleic Acids Res. 2015 Mar 31;43(6):e36. doi: 10.1093/nar/gku1336. Epub 2014 Dec 24.
5
Biochemical, genetic, and metabolic engineering strategies to enhance coproduction of 1-propanol and ethanol in engineered Escherichia coli.
Appl Microbiol Biotechnol. 2014 Nov;98(22):9499-515. doi: 10.1007/s00253-014-6093-9. Epub 2014 Oct 10.
6
CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri.
Nucleic Acids Res. 2014;42(17):e131. doi: 10.1093/nar/gku623. Epub 2014 Jul 29.
7
CRISPR-Cas system: a powerful tool for genome engineering.
Plant Mol Biol. 2014 Jun;85(3):209-18. doi: 10.1007/s11103-014-0188-7. Epub 2014 Mar 18.
8
Efficient inference of recombination hot regions in bacterial genomes.
Mol Biol Evol. 2014 Jun;31(6):1593-605. doi: 10.1093/molbev/msu082. Epub 2014 Feb 27.
9
RNA-guided editing of bacterial genomes using CRISPR-Cas systems.
Nat Biotechnol. 2013 Mar;31(3):233-9. doi: 10.1038/nbt.2508. Epub 2013 Jan 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验