Department of Pharmacology, Columbia University, New York, NY, USA.
Department of Systems Biology, Columbia University, New York, NY, USA.
Nat Biotechnol. 2021 Apr;39(4):480-489. doi: 10.1038/s41587-020-00745-y. Epub 2020 Nov 23.
Existing technologies for site-specific integration of kilobase-sized DNA sequences in bacteria are limited by low efficiency, a reliance on recombination, the need for multiple vectors, and challenges in multiplexing. To address these shortcomings, we introduce a substantially improved version of our previously reported Tn7-like transposon from Vibrio cholerae, which uses a Type I-F CRISPR-Cas system for programmable, RNA-guided transposition. The optimized insertion of transposable elements by guide RNA-assisted targeting (INTEGRATE) system achieves highly accurate and marker-free DNA integration of up to 10 kilobases at ~100% efficiency in bacteria. Using multi-spacer CRISPR arrays, we achieved simultaneous multiplexed insertions in three genomic loci and facile, multi-loci deletions by combining orthogonal integrases and recombinases. Finally, we demonstrated robust function in biomedically and industrially relevant bacteria and achieved target- and species-specific integration in a complex bacterial community. This work establishes INTEGRATE as a versatile tool for multiplexed, kilobase-scale genome engineering.
现有的细菌中特定位置整合千碱基大小 DNA 序列的技术受到效率低、依赖重组、需要多个载体以及多重化困难等因素的限制。为了解决这些缺点,我们引入了一个经过大幅改进的来自霍乱弧菌的 Tn7 样转座子,它使用 I 型-F CRISPR-Cas 系统进行可编程、RNA 引导的转位。经 RNA 引导靶向优化的转座元件插入(INTEGRATE)系统可实现高达 10kb 的高精度和无标记 DNA 整合,效率高达 100%。使用多间隔 CRISPR 阵列,我们通过组合正交整合酶和重组酶,在三个基因组位点同时实现了多重插入,并可轻松进行多位点缺失。最后,我们在具有生物医学和工业相关性的细菌中证明了其强大的功能,并在复杂的细菌群落中实现了目标和物种特异性的整合。这项工作确立了 INTEGRATE 作为一种多功能的千碱基规模基因组工程的多重工具。