Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE, USA.
Bull Math Biol. 2012 Mar;74(3):590-614. doi: 10.1007/s11538-011-9678-9. Epub 2011 Aug 9.
Networks of neurons in some brain areas are flexible enough to encode new memories quickly. Using a standard firing rate model of recurrent networks, we develop a theory of flexible memory networks. Our main results characterize networks having the maximal number of flexible memory patterns, given a constraint graph on the network's connectivity matrix. Modulo a mild topological condition, we find a close connection between maximally flexible networks and rank 1 matrices. The topological condition is H (1)(X;ℤ)=0, where X is the clique complex associated to the network's constraint graph; this condition is generically satisfied for large random networks that are not overly sparse. In order to prove our main results, we develop some matrix-theoretic tools and present them in a self-contained section independent of the neuroscience context.
一些脑区的神经元网络具有足够的灵活性,可以快速编码新的记忆。我们使用递归网络的标准发放率模型,发展了一个灵活记忆网络理论。我们的主要结果描述了在网络连接矩阵的约束图给定的情况下,具有最大数量的灵活记忆模式的网络。除了一个温和的拓扑条件外,我们发现最大灵活网络与秩 1 矩阵之间存在紧密联系。拓扑条件是 H(1)(X;Z)=0,其中 X 是与网络约束图相关联的团复形;对于不是过于稀疏的大型随机网络,这个条件通常是满足的。为了证明我们的主要结果,我们开发了一些矩阵理论工具,并在一个与神经科学背景无关的独立的自包含章节中呈现。