Suppr超能文献

平衡网络的记忆容量

Memory capacity of balanced networks.

作者信息

Aviel Yuval, Horn David, Abeles Moshe

机构信息

Interdisciplinary Center for Neural Computation, Hebrew University, Jerusalem, Israel.

出版信息

Neural Comput. 2005 Mar;17(3):691-713. doi: 10.1162/0899766053019962.

Abstract

We study the problem of memory capacity in balanced networks of spiking neurons. Associative memories are represented by either synfire chains (SFC) or Hebbian cell assemblies (HCA). Both can be embedded in these balanced networks by a proper choice of the architecture of the network. The size w(E) of a pool in an SFC or of an HCA is limited from below and from above by dynamical considerations. Proper scaling of w(E) by radicalK, where K is the total excitatory synaptic connectivity, allows us to obtain a uniform description of our system for any given K. Using combinatorial arguments, we derive an upper limit on memory capacity. The capacity allowed by the dynamics of the system, alpha(c), is measured by simulations. For HCA, we obtain alpha(c) of order 0.1, and for SFC, we find values of order 0.065. The capacity can be improved by introducing shadow patterns, inhibitory cell assemblies that are fed by the excitatory assemblies in both memory models. This leads to a doubly balanced network, where, in addition to the usual global balancing of excitation and inhibition, there exists specific balance between the effects of both types of assemblies on the background activity of the network. For each of the memory models and for each network architecture, we obtain an allowed region (phase space) for w(E)/ radicalK in which the model is viable.

摘要

我们研究了平衡的脉冲神经元网络中的记忆容量问题。关联记忆由同步发放链(SFC)或赫布细胞集合(HCA)表示。通过适当选择网络架构,两者都可以嵌入到这些平衡网络中。从动力学角度考虑,SFC中的一个池或HCA的大小w(E)存在上下限。通过用radicalK对w(E)进行适当缩放,其中K是总的兴奋性突触连接性,我们能够对任何给定的K获得我们系统的统一描述。利用组合论证,我们推导出了记忆容量的上限。通过模拟测量系统动力学允许的容量alpha(c)。对于HCA,我们得到的alpha(c)约为0.1,对于SFC,我们发现其值约为0.065。通过引入影子模式(在两种记忆模型中由兴奋性集合馈入的抑制性细胞集合)可以提高容量。这导致了一个双重平衡网络,其中除了通常的激发和抑制的全局平衡外,两种类型的集合对网络背景活动的影响之间还存在特定的平衡。对于每个记忆模型和每种网络架构,我们都得到了w(E)/radicalK的允许区域(相空间),在该区域中模型是可行的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验