Max Planck Institute of Immunobiology and Epigenetics, and Faculty of Biology, Biology III, University of Freiburg, Freiburg, Germany.
PLoS One. 2011;6(7):e22928. doi: 10.1371/journal.pone.0022928. Epub 2011 Jul 29.
To understand complex biological signalling mechanisms, mathematical modelling of signal transduction pathways has been applied successfully in last few years. However, precise quantitative measurements of signal transduction events such as activation-dependent phosphorylation of proteins, remains one bottleneck to this success.
METHODOLOGY/PRINCIPAL FINDINGS: We use multi-colour immunoprecipitation measured by flow cytometry (IP-FCM) for studying signal transduction events to unrivalled precision. In this method, antibody-coupled latex beads capture the protein of interest from cellular lysates and are then stained with differently fluorescent-labelled antibodies to quantify the amount of the immunoprecipitated protein, of an interaction partner and of phosphorylation sites. The fluorescence signals are measured by FCM. Combining this procedure with beads containing defined amounts of a fluorophore allows retrieving absolute numbers of stained proteins, and not only relative values. Using IP-FCM we derived multidimensional data on the membrane-proximal T-cell antigen receptor (TCR-CD3) signalling network, including the recruitment of the kinase ZAP70 to the TCR-CD3 and subsequent ZAP70 activation by phosphorylation in the murine T-cell hybridoma and primary murine T cells. Counter-intuitively, these data showed that cell stimulation by pervanadate led to a transient decrease of the phospho-ZAP70/ZAP70 ratio at the TCR. A mechanistic mathematical model of the underlying processes demonstrated that an initial massive recruitment of non-phosphorylated ZAP70 was responsible for this behaviour. Further, the model predicted a temporal order of multisite phosphorylation of ZAP70 (with Y319 phosphorylation preceding phosphorylation at Y493) that we subsequently verified experimentally.
CONCLUSIONS/SIGNIFICANCE: The quantitative data sets generated by IP-FCM are one order of magnitude more precise than Western blot data. This accuracy allowed us to gain unequalled insight into the dynamics of the TCR-CD3-ZAP70 signalling network.
为了理解复杂的生物信号机制,近年来已经成功地将信号转导途径的数学建模应用于医学研究。然而,对于信号转导事件的精确定量测量,例如蛋白质的激活依赖性磷酸化,仍然是该领域成功的一个瓶颈。
方法/主要发现:我们使用多色免疫沉淀流式细胞术(IP-FCM)来研究信号转导事件,以达到前所未有的精度。在这种方法中,抗体偶联的乳胶珠从细胞裂解物中捕获感兴趣的蛋白质,然后用不同荧光标记的抗体进行染色,以定量免疫沉淀的蛋白质、相互作用伙伴和磷酸化位点的量。荧光信号通过流式细胞术进行测量。将该程序与包含已知量荧光团的珠子结合使用,可以获得染色蛋白质的绝对数量,而不仅仅是相对值。我们使用 IP-FCM 从多维数据中得出了关于膜近端 T 细胞抗原受体(TCR-CD3)信号网络的信息,包括激酶 ZAP70 向 TCR-CD3 的募集以及随后在小鼠 T 细胞杂交瘤和原代小鼠 T 细胞中通过磷酸化激活 ZAP70。反直觉的是,这些数据表明,过钒酸钠刺激细胞导致 TCR 处的磷酸化 ZAP70/ZAP70 比值短暂下降。潜在过程的机制数学模型表明,非磷酸化 ZAP70 的初始大量募集是导致这种行为的原因。此外,该模型预测了 ZAP70 的多部位磷酸化的时间顺序(Y319 的磷酸化先于 Y493 的磷酸化),我们随后通过实验验证了这一点。
结论/意义:IP-FCM 生成的定量数据集比 Western blot 数据精确一个数量级。这种准确性使我们能够深入了解 TCR-CD3-ZAP70 信号网络的动力学。