Suppr超能文献

Sgt2 蛋白结构模型及其与伴侣蛋白和 Get4/Get5 复合物的相互作用。

A structural model of the Sgt2 protein and its interactions with chaperones and the Get4/Get5 complex.

机构信息

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.

出版信息

J Biol Chem. 2011 Sep 30;286(39):34325-34. doi: 10.1074/jbc.M111.277798. Epub 2011 Aug 10.

Abstract

The insertion of tail-anchored transmembrane (TA) proteins into the appropriate membrane is a post-translational event that requires stabilization of the transmembrane domain and targeting to the proper destination. Sgt2 is a heat-shock protein cognate (HSC) co-chaperone that preferentially binds endoplasmic reticulum-destined TA proteins and directs them to the GET pathway via Get4 and Get5. Here, we present the crystal structure from a fungal Sgt2 homolog of the tetratrico-repeat (TPR) domain and part of the linker that connects to the C-terminal domain. The linker extends into the two-carboxylate clamp of the TPR domain from a symmetry-related molecule mimicking the binding to HSCs. Based on this structure, we provide biochemical evidence that the Sgt2 TPR domain has the ability to directly bind multiple HSC family members. The structure allows us to propose features involved in this lower specificity relative to other TPR containing co-chaperones. We further show that a dimer of Sgt2 binds a single Get5 and use small angle x-ray scattering to characterize the domain arrangement of Sgt2 in solution. These results allow us to present a structural model of the Sgt2-Get4/Get5-HSC complex.

摘要

尾巴锚定跨膜 (TA) 蛋白的插入是一个翻译后事件,需要稳定跨膜结构域并将其靶向到适当的目的地。Sgt2 是一种热休克蛋白同源物 (HSC) 共伴侣,它优先结合内质网靶向的 TA 蛋白,并通过 Get4 和 Get5 将它们导向 GET 途径。在这里,我们展示了来自真菌 Sgt2 同源物的四重复 (TPR) 结构域和连接到 C 末端结构域的部分接头的晶体结构。接头从与 HSCs 结合的对称相关分子延伸到 TPR 结构域的双羧酸夹中。基于该结构,我们提供了生化证据表明 Sgt2 的 TPR 结构域具有直接结合多个 HSC 家族成员的能力。该结构使我们能够提出与其他含有 TPR 的共伴侣相比,这种较低特异性所涉及的特征。我们进一步表明,Sgt2 的二聚体结合单个 Get5,并使用小角度 X 射线散射来表征 Sgt2 在溶液中的结构域排列。这些结果使我们能够提出 Sgt2-Get4/Get5-HSC 复合物的结构模型。

相似文献

1
A structural model of the Sgt2 protein and its interactions with chaperones and the Get4/Get5 complex.
J Biol Chem. 2011 Sep 30;286(39):34325-34. doi: 10.1074/jbc.M111.277798. Epub 2011 Aug 10.
2
Structure of the Sgt2 dimerization domain complexed with the Get5 UBL domain involved in the targeting of tail-anchored membrane proteins to the endoplasmic reticulum.
Acta Crystallogr D Biol Crystallogr. 2013 Oct;69(Pt 10):2081-90. doi: 10.1107/S0907444913019379. Epub 2013 Sep 20.
3
Structure of the Sgt2/Get5 complex provides insights into GET-mediated targeting of tail-anchored membrane proteins.
Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):1327-32. doi: 10.1073/pnas.1207518110. Epub 2013 Jan 7.
5
Crystal structure of Get4-Get5 complex and its interactions with Sgt2, Get3, and Ydj1.
J Biol Chem. 2010 Mar 26;285(13):9962-9970. doi: 10.1074/jbc.M109.087098. Epub 2010 Jan 27.
6
Get5 carboxyl-terminal domain is a novel dimerization motif that tethers an extended Get4/Get5 complex.
J Biol Chem. 2012 Mar 9;287(11):8310-7. doi: 10.1074/jbc.M111.333252. Epub 2012 Jan 17.
8
1H, 13C and 15N assignments of Sgt2 N-terminal dimerisation domain and its binding partner, Get5 Ubiquitin-like domain.
Biomol NMR Assign. 2013 Oct;7(2):271-4. doi: 10.1007/s12104-012-9425-7. Epub 2012 Sep 22.
9
Structural characterization of the Get4/Get5 complex and its interaction with Get3.
Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12127-32. doi: 10.1073/pnas.1006036107. Epub 2010 Jun 16.
10
Crystal structure of ATP-bound Get3-Get4-Get5 complex reveals regulation of Get3 by Get4.
Nat Struct Mol Biol. 2014 May;21(5):437-42. doi: 10.1038/nsmb.2813. Epub 2014 Apr 13.

引用本文的文献

1
Characterisation of guided entry of tail-anchored proteins in Magnaporthe oryzae.
PLoS Pathog. 2025 Jul 28;21(7):e1013011. doi: 10.1371/journal.ppat.1013011. eCollection 2025 Jul.
2
Remote on-off switching of protein activity by intrinsically disordered region.
Nat Struct Mol Biol. 2025 Jun 4. doi: 10.1038/s41594-025-01585-7.
4
Dynamic stability of Sgt2 enables selective and privileged client handover in a chaperone triad.
Nat Commun. 2024 Jan 2;15(1):134. doi: 10.1038/s41467-023-44260-5.
6
Volleying plasma membrane proteins from birth to death: Role of J-domain proteins.
Front Mol Biosci. 2022 Dec 15;9:1072242. doi: 10.3389/fmolb.2022.1072242. eCollection 2022.
7
Structurally derived universal mechanism for the catalytic cycle of the tail-anchored targeting factor Get3.
Nat Struct Mol Biol. 2022 Aug;29(8):820-830. doi: 10.1038/s41594-022-00798-4. Epub 2022 Jul 18.
8
Looking for a safe haven: tail-anchored proteins and their membrane insertion pathways.
Plant Physiol. 2021 Dec 4;187(4):1916-1928. doi: 10.1093/plphys/kiab298.
9
Deciphering the molecular organization of GET pathway chaperones through native mass spectrometry.
Biophys J. 2022 Apr 5;121(7):1289-1298. doi: 10.1016/j.bpj.2022.02.026. Epub 2022 Feb 19.
10
A conserved guided entry of tail-anchored pathway is involved in the trafficking of a subset of membrane proteins in Plasmodium falciparum.
PLoS Pathog. 2021 Nov 15;17(11):e1009595. doi: 10.1371/journal.ppat.1009595. eCollection 2021 Nov.

本文引用的文献

1
Rapid automated superposition of shapes and macromolecular models using spherical harmonics.
J Appl Crystallogr. 2016 May 16;49(Pt 3):953-960. doi: 10.1107/S1600576716005793. eCollection 2016 Jun 1.
2
Cooperative and independent activities of Sgt2 and Get5 in the targeting of tail-anchored proteins.
Biol Chem. 2011 Jul;392(7):601-8. doi: 10.1515/BC.2011.066. Epub 2011 May 28.
3
Chaperone receptors: guiding proteins to intracellular compartments.
Protoplasma. 2012 Jan;249(1):21-30. doi: 10.1007/s00709-011-0270-9. Epub 2011 Apr 3.
4
iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM.
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):271-81. doi: 10.1107/S0907444910048675. Epub 2011 Mar 18.
5
Molecular mechanism of the negative regulation of Smad1/5 protein by carboxyl terminus of Hsc70-interacting protein (CHIP).
J Biol Chem. 2011 May 6;286(18):15883-94. doi: 10.1074/jbc.M110.201814. Epub 2011 Mar 16.
6
Tail-anchored membrane proteins: exploring the complex diversity of tail-anchored-protein targeting in plant cells.
Plant Cell Rep. 2011 Feb;30(2):137-51. doi: 10.1007/s00299-010-0925-6. Epub 2010 Sep 28.
7
A chaperone cascade sorts proteins for posttranslational membrane insertion into the endoplasmic reticulum.
Mol Cell. 2010 Oct 8;40(1):159-71. doi: 10.1016/j.molcel.2010.08.038. Epub 2010 Sep 16.
8
Targeting pathways of C-tail-anchored proteins.
Biochim Biophys Acta. 2011 Mar;1808(3):937-46. doi: 10.1016/j.bbamem.2010.07.010. Epub 2010 Jul 17.
9
Structural characterization of the Get4/Get5 complex and its interaction with Get3.
Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12127-32. doi: 10.1073/pnas.1006036107. Epub 2010 Jun 16.
10
Automated identification of pathways from quantitative genetic interaction data.
Mol Syst Biol. 2010 Jun 8;6:379. doi: 10.1038/msb.2010.27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验