Suppr超能文献

信号转导网络状态预测了扭变对不同生长因子环境下乳腺细胞迁移的影响。

Signaling network state predicts twist-mediated effects on breast cell migration across diverse growth factor contexts.

机构信息

Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge MA 02139, USA.

出版信息

Mol Cell Proteomics. 2011 Nov;10(11):M111.008433. doi: 10.1074/mcp.M111.008433. Epub 2011 Aug 10.

Abstract

Epithelial-mesenchymal transition (EMT), whether in developmental morphogenesis or malignant transformation, prominently involves modified cell motility behavior. Although major advances have transpired in understanding the molecular pathways regulating the process of EMT induction per se by certain environmental stimuli, an important outstanding question is how the activities of signaling pathways governing motility yield the diverse movement behaviors characteristic of pre-induction versus postinduction states across a broad landscape of growth factor contexts. For the particular case of EMT induction in human mammary cells by ectopic expression of the transcription factor Twist, we found the migration responses to a panel of growth factors (EGF, HRG, IGF, HGF) dramatically disparate between confluent pre-Twist epithelial cells and sparsely distributed post-Twist mesenchymal cells-but that a computational model quantitatively integrating multiple key signaling node activities could nonetheless account for this full range of behavior. Moreover, motility in both conditions was successfully predicted a priori for an additional growth factor (PDGF) treatment. Although this signaling network state model could comprehend motility behavior globally, modulation of the network interactions underlying the altered pathway activities was identified by ascertaining differences in quantitative topological influences among the nodes between the two conditions.

摘要

上皮-间充质转化(EMT),无论是在发育形态发生还是恶性转化中,都明显涉及到细胞运动行为的改变。尽管在理解特定环境刺激诱导 EMT 过程本身的分子途径方面已经取得了重大进展,但一个重要的悬而未决的问题是,信号通路的活性如何产生在广泛的生长因子背景下,诱导前和诱导后状态的不同运动行为。就转录因子 Twist 在人乳腺细胞中的 EMT 诱导的特殊情况而言,我们发现,一组生长因子(EGF、HRG、IGF、HGF)对融合前 Twist 上皮细胞和稀疏分布的 Twist 间充质细胞的迁移反应截然不同-但一个整合多个关键信号节点活动的计算模型仍然可以解释这种全方位的行为。此外,对于另一种生长因子(PDGF)处理,这两种情况下的迁移都可以预先成功预测。尽管这个信号网络状态模型可以全局理解运动行为,但通过确定两个条件下节点之间定量拓扑影响的差异,可以确定改变的通路活性下的网络相互作用的调制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4492/3226401/88a6d48216ed/zjw0111139720001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验