Marquardt B, Eude L, Gowtham M, Cho G, Jeong H J, Châtelet M, Cojocaru C S, Kim B S, Pribat D
Laboratoire de Physique des Interfaces et des Couches Minces, Ecole Polytechnique, 91128, Palaiseau, France.
Nanotechnology. 2008 Oct 8;19(40):405607. doi: 10.1088/0957-4484/19/40/405607. Epub 2008 Aug 21.
Porous alumina templates have been fabricated by applying an exponential voltage decrease at the end of the anodization process. The time constant η of the exponential voltage function has been used to control the average thickness and the thickness distribution of the barrier layer at the bottom of the pores of the alumina structure. Depending on the η value, the thickness distribution of the barrier layer can be made very uniform or highly scattered, which allows us to subsequently fine tune the electrodeposition yield of nickel nanoparticles/nanowires at low voltage. As an illustration, the pore filling percentage with Ni has been varied, in a totally reproducible manner, between ∼3 and 100%. Combined with the ability to vary the pore diameter and repetition step over ∼2 orders of magnitude (by varying the anodization voltage and electrolyte type), the control of the pore filling percentage with metal particles/nanowires could bring novel approaches for the organization of nano-objects.
通过在阳极氧化过程结束时施加指数电压降来制备多孔氧化铝模板。指数电压函数的时间常数η已被用于控制氧化铝结构孔底部阻挡层的平均厚度和厚度分布。根据η值,阻挡层的厚度分布可以变得非常均匀或高度分散,这使我们能够随后在低电压下微调镍纳米颗粒/纳米线的电沉积产率。作为一个例子,镍的孔填充率以完全可重复的方式在约3%至100%之间变化。结合在约2个数量级范围内改变孔径和重复步骤的能力(通过改变阳极氧化电压和电解质类型),控制金属颗粒/纳米线的孔填充率可为纳米物体的组装带来新方法。