Suppr超能文献

硼酸氧化作为一种生物正交反应方法,用于研究生命体系中过氧化氢的化学性质。

Boronate oxidation as a bioorthogonal reaction approach for studying the chemistry of hydrogen peroxide in living systems.

机构信息

Department of Chemistry, University of California, Berkeley, California 94720, USA.

出版信息

Acc Chem Res. 2011 Sep 20;44(9):793-804. doi: 10.1021/ar200126t. Epub 2011 Aug 11.

Abstract

Reactive oxygen species (ROS), such as hydrogen peroxide, are important products of oxygen metabolism that, when misregulated, can accumulate and cause oxidative stress inside cells. Accordingly, organisms have evolved molecular systems, including antioxidant metalloenzymes (such as superoxide dismutase and catalase) and an array of thiol-based redox couples, to neutralize this threat to the cell when it occurs. On the other hand, emerging evidence shows that the controlled generation of ROS, particularly H(2)O(2), is necessary to maintain cellular fitness. The identification of NADPH oxidase enzymes, which generate specific ROS and reside in virtually all cell types throughout the body, is a prime example. Indeed, a growing body of work shows that H(2)O(2) and other ROS have essential functions in healthy physiological signaling pathways. The signal-stress dichotomy of H(2)O(2) serves as a source of motivation for disentangling its beneficial from its detrimental effects on living systems. Molecular imaging of this oxygen metabolite with reaction-based probes is a powerful approach for real-time, noninvasive monitoring of H(2)O(2) chemistry in biological specimens, but two key challenges to studying H(2)O(2) in this way are chemoselectivity and bioorthogonality of probe molecules. Chemoselectivity is problematic because traditional methods for ROS detection suffer from nonspecific reactivity with other ROS. Moreover, some methods require enzymatic additives not compatible with live-cell or live-animal specimens. Additionally, bioorthogonality requires that the reactions must not compete with or disturb intrinsic cellular chemistry; this requirement is particularly critical with thiol- or metal-based couples mediating the major redox events within the cell. Chemoselective bioorthogonal reactions, such as alkyne-azide cycloadditions and related click reactions, the Staudinger-Bertozzi ligation, and the transformations used in various reaction-based molecular probes, have found widespread application in the modification, labeling, and detection of biological molecules and processes. In this Account, we summarize H(2)O(2) studies from our laboratory using the H(2)O(2)-mediated oxidation of aryl boronates to phenols as a bioorthogonal approach to detect fluxes of this important ROS in living systems. We have installed this versatile switch onto organic and inorganic scaffolds to serve as "turn-on" probes for visible and near-infrared (NIR) fluorescence, ratiometric fluorescence, time-gated lanthanide luminescence, and in vivo bioluminescence detection of H(2)O(2) in living cells and animals. Further chemical and genetic manipulations target these probes to specific organelles and other subcellular locales and can also allow them to be trapped intracellularly, enhancing their sensitivity. These novel chemical tools have revealed fundamental new biological insights into the production, localization, trafficking, and in vivo roles of H(2)O(2) in a wide variety of living systems, including immune, cancer, stem, and neural cell models.

摘要

活性氧(ROS),如过氧化氢,是氧代谢的重要产物,当它们失调时,会在细胞内积累并导致氧化应激。因此,生物已经进化出分子系统,包括抗氧化金属酶(如超氧化物歧化酶和过氧化氢酶)和一系列基于巯基的氧化还原对,以在细胞受到威胁时中和这种威胁。另一方面,新出现的证据表明,ROS 的受控产生,特别是 H2O2,对于维持细胞的适宜性是必要的。NADPH 氧化酶的发现就是一个很好的例子,它可以产生特定的 ROS,并且存在于体内几乎所有类型的细胞中。事实上,越来越多的工作表明,H2O2 和其他 ROS 在健康的生理信号通路中具有重要的功能。H2O2 的信号-应激二分法为我们提供了动力,使我们能够将其对生命系统的有益和有害影响区分开来。使用基于反应的探针对这种氧代谢物进行分子成像,是实时、非侵入性监测生物样本中 H2O2 化学性质的有力方法,但以这种方式研究 H2O2 存在两个关键挑战,即探针分子的化学选择性和生物正交性。化学选择性是一个问题,因为传统的 ROS 检测方法存在与其他 ROS 非特异性反应的问题。此外,一些方法需要与活细胞或活动物标本不兼容的酶添加剂。此外,生物正交性要求反应不能与或干扰细胞内的固有化学性质;对于介导细胞内主要氧化还原事件的巯基或金属对,这一要求尤其关键。化学选择性生物正交反应,如炔烃-叠氮化物环加成反应及其相关的点击反应、Staudinger-Bertozzi 连接以及各种基于反应的分子探针中使用的转化,已经在生物分子和过程的修饰、标记和检测中得到了广泛的应用。在本报告中,我们总结了我们实验室使用 H2O2 介导的芳基硼酸氧化为苯酚的研究,将其作为一种生物正交方法,用于检测活系统中这种重要 ROS 的通量。我们已经将这个多功能开关安装在有机和无机支架上,作为可见和近红外(NIR)荧光、比率荧光、时间门控镧系元素发光以及活细胞和动物中 H2O2 的体内生物发光检测的“开启”探针。进一步的化学和遗传操作将这些探针靶向特定的细胞器和其他亚细胞位置,并且还可以使它们在细胞内被捕获,从而提高其灵敏度。这些新的化学工具为各种生命系统中 H2O2 的产生、定位、运输和体内作用提供了新的生物学见解,包括免疫、癌症、干细胞和神经细胞模型。

相似文献

1
Boronate oxidation as a bioorthogonal reaction approach for studying the chemistry of hydrogen peroxide in living systems.
Acc Chem Res. 2011 Sep 20;44(9):793-804. doi: 10.1021/ar200126t. Epub 2011 Aug 11.
2
From mechanism to mouse: a tale of two bioorthogonal reactions.
Acc Chem Res. 2011 Sep 20;44(9):666-76. doi: 10.1021/ar200148z. Epub 2011 Aug 15.
5
Near-infrared fluorescence probe for hydrogen peroxide detection: design, synthesis, and application in living systems.
Analyst. 2019 Jun 7;144(11):3643-3648. doi: 10.1039/c9an00385a. Epub 2019 May 10.
6
Boronate-based fluorescent probes: imaging hydrogen peroxide in living systems.
Methods Enzymol. 2013;526:19-43. doi: 10.1016/B978-0-12-405883-5.00002-8.
7
Methods for detection and measurement of hydrogen peroxide inside and outside of cells.
Mol Cells. 2010 Jun;29(6):539-49. doi: 10.1007/s10059-010-0082-3. Epub 2010 Jun 4.
9
Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
Astrobiology. 2022 Jun;22(S1):S112-S164. doi: 10.1089/AST.2021.0113. Epub 2022 May 19.

引用本文的文献

1
Emerging Targeted Delivery Strategies of Nanosystems for Ischemic Stroke Treatment.
Int J Nanomedicine. 2025 Jun 24;20:8143-8171. doi: 10.2147/IJN.S519328. eCollection 2025.
2
Detection and Analysis of Reactive Oxygen Species (ROS): Buffer Components Are Not Bystanders.
Anal Chem. 2025 Jul 22;97(28):14931-14942. doi: 10.1021/acs.analchem.4c07070. Epub 2025 Jun 3.
3
Thioether Oxidation Chemistry in Reactive Oxygen Species (ROS)-Sensitive Trigger Design: A Kinetic Analysis.
Org Lett. 2025 Mar 28;27(12):3071-3076. doi: 10.1021/acs.orglett.5c00747. Epub 2025 Mar 19.
4
Small molecule probes for peroxynitrite detection.
Redox Biochem Chem. 2024 Dec;10. doi: 10.1016/j.rbc.2024.100034. Epub 2024 Jul 26.
5
A Small-Molecule Approach Enables RNA Aptamers to Function as Sensors for Reactive Inorganic Targets.
Angew Chem Int Ed Engl. 2025 Mar 17;64(12):e202421936. doi: 10.1002/anie.202421936. Epub 2024 Dec 20.
6
A cascade X-ray energy converting approach toward radio-afterglow cancer theranostics.
Nat Nanotechnol. 2025 Feb;20(2):286-295. doi: 10.1038/s41565-024-01809-9. Epub 2024 Nov 15.
8
Unlocking the electrochemical functions of biomolecular condensates.
Nat Chem Biol. 2024 Nov;20(11):1420-1433. doi: 10.1038/s41589-024-01717-y. Epub 2024 Sep 26.
9
Development of a Novel Amplifiable System to Quantify Hydrogen Peroxide in Living Cells.
J Am Chem Soc. 2024 Aug 14;146(32):22396-22404. doi: 10.1021/jacs.4c05366. Epub 2024 Jul 30.
10
Conditional PROTAC: Recent Strategies for Modulating Targeted Protein Degradation.
ChemMedChem. 2024 Nov 18;19(22):e202400326. doi: 10.1002/cmdc.202400326. Epub 2024 Sep 18.

本文引用的文献

1
Development of a highly sensitive fluorescence probe for hydrogen peroxide.
J Am Chem Soc. 2011 Jul 13;133(27):10629-37. doi: 10.1021/ja203521e. Epub 2011 Jun 21.
2
A unique paradigm for a Turn-ON near-infrared cyanine-based probe: noninvasive intravital optical imaging of hydrogen peroxide.
J Am Chem Soc. 2011 Jul 20;133(28):10960-5. doi: 10.1021/ja203145v. Epub 2011 Jun 22.
3
Unraveling the biological roles of reactive oxygen species.
Cell Metab. 2011 Apr 6;13(4):361-366. doi: 10.1016/j.cmet.2011.03.010.
4
A hydrogen peroxide-responsive hyperpolarized 13C MRI contrast agent.
J Am Chem Soc. 2011 Mar 23;133(11):3776-9. doi: 10.1021/ja111589a. Epub 2011 Mar 2.
6
Nox2 redox signaling maintains essential cell populations in the brain.
Nat Chem Biol. 2011 Feb;7(2):106-12. doi: 10.1038/nchembio.497. Epub 2010 Dec 26.
7
In vivo imaging of hydrogen peroxide production in a murine tumor model with a chemoselective bioluminescent reporter.
Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21316-21. doi: 10.1073/pnas.1012864107. Epub 2010 Nov 29.
8
Lanthanide-based luminescent probes for selective time-gated detection of hydrogen peroxide in water and in living cells.
Chem Commun (Camb). 2010 Oct 28;46(40):7510-2. doi: 10.1039/c0cc01560a. Epub 2010 Sep 14.
9
Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling.
Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15681-6. doi: 10.1073/pnas.1005776107. Epub 2010 Aug 19.
10
Hydrogen peroxide activated matrix metalloproteinase inhibitors: a prodrug approach.
Angew Chem Int Ed Engl. 2010 Sep 10;49(38):6795-7. doi: 10.1002/anie.201003819.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验