Department of Chemistry, University of California, Berkeley, California 94720, USA.
Acc Chem Res. 2011 Sep 20;44(9):793-804. doi: 10.1021/ar200126t. Epub 2011 Aug 11.
Reactive oxygen species (ROS), such as hydrogen peroxide, are important products of oxygen metabolism that, when misregulated, can accumulate and cause oxidative stress inside cells. Accordingly, organisms have evolved molecular systems, including antioxidant metalloenzymes (such as superoxide dismutase and catalase) and an array of thiol-based redox couples, to neutralize this threat to the cell when it occurs. On the other hand, emerging evidence shows that the controlled generation of ROS, particularly H(2)O(2), is necessary to maintain cellular fitness. The identification of NADPH oxidase enzymes, which generate specific ROS and reside in virtually all cell types throughout the body, is a prime example. Indeed, a growing body of work shows that H(2)O(2) and other ROS have essential functions in healthy physiological signaling pathways. The signal-stress dichotomy of H(2)O(2) serves as a source of motivation for disentangling its beneficial from its detrimental effects on living systems. Molecular imaging of this oxygen metabolite with reaction-based probes is a powerful approach for real-time, noninvasive monitoring of H(2)O(2) chemistry in biological specimens, but two key challenges to studying H(2)O(2) in this way are chemoselectivity and bioorthogonality of probe molecules. Chemoselectivity is problematic because traditional methods for ROS detection suffer from nonspecific reactivity with other ROS. Moreover, some methods require enzymatic additives not compatible with live-cell or live-animal specimens. Additionally, bioorthogonality requires that the reactions must not compete with or disturb intrinsic cellular chemistry; this requirement is particularly critical with thiol- or metal-based couples mediating the major redox events within the cell. Chemoselective bioorthogonal reactions, such as alkyne-azide cycloadditions and related click reactions, the Staudinger-Bertozzi ligation, and the transformations used in various reaction-based molecular probes, have found widespread application in the modification, labeling, and detection of biological molecules and processes. In this Account, we summarize H(2)O(2) studies from our laboratory using the H(2)O(2)-mediated oxidation of aryl boronates to phenols as a bioorthogonal approach to detect fluxes of this important ROS in living systems. We have installed this versatile switch onto organic and inorganic scaffolds to serve as "turn-on" probes for visible and near-infrared (NIR) fluorescence, ratiometric fluorescence, time-gated lanthanide luminescence, and in vivo bioluminescence detection of H(2)O(2) in living cells and animals. Further chemical and genetic manipulations target these probes to specific organelles and other subcellular locales and can also allow them to be trapped intracellularly, enhancing their sensitivity. These novel chemical tools have revealed fundamental new biological insights into the production, localization, trafficking, and in vivo roles of H(2)O(2) in a wide variety of living systems, including immune, cancer, stem, and neural cell models.
活性氧(ROS),如过氧化氢,是氧代谢的重要产物,当它们失调时,会在细胞内积累并导致氧化应激。因此,生物已经进化出分子系统,包括抗氧化金属酶(如超氧化物歧化酶和过氧化氢酶)和一系列基于巯基的氧化还原对,以在细胞受到威胁时中和这种威胁。另一方面,新出现的证据表明,ROS 的受控产生,特别是 H2O2,对于维持细胞的适宜性是必要的。NADPH 氧化酶的发现就是一个很好的例子,它可以产生特定的 ROS,并且存在于体内几乎所有类型的细胞中。事实上,越来越多的工作表明,H2O2 和其他 ROS 在健康的生理信号通路中具有重要的功能。H2O2 的信号-应激二分法为我们提供了动力,使我们能够将其对生命系统的有益和有害影响区分开来。使用基于反应的探针对这种氧代谢物进行分子成像,是实时、非侵入性监测生物样本中 H2O2 化学性质的有力方法,但以这种方式研究 H2O2 存在两个关键挑战,即探针分子的化学选择性和生物正交性。化学选择性是一个问题,因为传统的 ROS 检测方法存在与其他 ROS 非特异性反应的问题。此外,一些方法需要与活细胞或活动物标本不兼容的酶添加剂。此外,生物正交性要求反应不能与或干扰细胞内的固有化学性质;对于介导细胞内主要氧化还原事件的巯基或金属对,这一要求尤其关键。化学选择性生物正交反应,如炔烃-叠氮化物环加成反应及其相关的点击反应、Staudinger-Bertozzi 连接以及各种基于反应的分子探针中使用的转化,已经在生物分子和过程的修饰、标记和检测中得到了广泛的应用。在本报告中,我们总结了我们实验室使用 H2O2 介导的芳基硼酸氧化为苯酚的研究,将其作为一种生物正交方法,用于检测活系统中这种重要 ROS 的通量。我们已经将这个多功能开关安装在有机和无机支架上,作为可见和近红外(NIR)荧光、比率荧光、时间门控镧系元素发光以及活细胞和动物中 H2O2 的体内生物发光检测的“开启”探针。进一步的化学和遗传操作将这些探针靶向特定的细胞器和其他亚细胞位置,并且还可以使它们在细胞内被捕获,从而提高其灵敏度。这些新的化学工具为各种生命系统中 H2O2 的产生、定位、运输和体内作用提供了新的生物学见解,包括免疫、癌症、干细胞和神经细胞模型。