Suppr超能文献

用于预测复杂混合物中代谢相互作用的机理建模框架。

A mechanistic modeling framework for predicting metabolic interactions in complex mixtures.

机构信息

Bioengineering Department, Royallieu Research Center, Université de Technology de Compiègne, Compiègne Cedex, France.

出版信息

Environ Health Perspect. 2011 Dec;119(12):1712-8. doi: 10.1289/ehp.1103510. Epub 2011 Aug 11.

Abstract

BACKGROUND

Computational modeling of the absorption, distribution, metabolism, and excretion of chemicals is now theoretically able to describe metabolic interactions in realistic mixtures of tens to hundreds of substances. That framework awaits validation.

OBJECTIVES

Our objectives were to a) evaluate the conditions of application of such a framework, b) confront the predictions of a physiologically integrated model of benzene, toluene, ethylbenzene, and m-xylene (BTEX) interactions with observed kinetics data on these substances in mixtures and, c) assess whether improving the mechanistic description has the potential to lead to better predictions of interactions.

METHODS

We developed three joint models of BTEX toxicokinetics and metabolism and calibrated them using Markov chain Monte Carlo simulations and single-substance exposure data. We then checked their predictive capabilities for metabolic interactions by comparison with mixture kinetic data.

RESULTS

The simplest joint model (BTEX interacting competitively for cytochrome P450 2E1 access) gives qualitatively correct and quantitatively acceptable predictions (with at most 50% deviations from the data). More complex models with two pathways or back-competition with metabolites have the potential to further improve predictions for BTEX mixtures.

CONCLUSIONS

A systems biology approach to large-scale prediction of metabolic interactions is advantageous on several counts and technically feasible. However, ways to obtain the required parameters need to be further explored.

摘要

背景

化学物质的吸收、分布、代谢和排泄的计算建模现在在理论上能够描述数十到数百种物质的真实混合物中的代谢相互作用。该框架有待验证。

目的

我们的目的是 a)评估这种框架的应用条件,b)用苯、甲苯、乙苯和二甲苯(BTEX)相互作用的生理综合模型的预测来对抗这些物质在混合物中的观察到的动力学数据,c)评估是否改善机制描述有可能导致更好地预测相互作用。

方法

我们开发了三个苯、甲苯、乙苯和二甲苯毒代动力学和代谢的联合模型,并使用马尔可夫链蒙特卡罗模拟和单物质暴露数据对其进行了校准。然后,我们通过与混合物动力学数据的比较来检查它们对代谢相互作用的预测能力。

结果

最简单的联合模型(BTEX 竞争性地相互作用以获得细胞色素 P450 2E1 的途径)给出了定性正确和定量可接受的预测(与数据的偏差最多为 50%)。具有两条途径或与代谢物的反向竞争的更复杂模型有可能进一步提高对 BTEX 混合物的预测。

结论

基于系统生物学的方法在预测代谢相互作用方面具有多个优势,并且在技术上是可行的。然而,需要进一步探索获得所需参数的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9a1/3261979/6bbbd26b2e54/ehp.1103510.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验