Suppr超能文献

芳香酶抑制剂混合物对卵巢周期干扰的高通量分析

High-Throughput Analysis of Ovarian Cycle Disruption by Mixtures of Aromatase Inhibitors.

作者信息

Bois Frederic Y, Golbamaki-Bakhtyari Nazanin, Kovarich Simona, Tebby Cleo, Gabb Henry A, Lemazurier Emmanuel

机构信息

Models for Ecotoxicology and Toxicology Unit (DRC/VIVA/METO), Institut National de l'Environnement Industriel et des Risques (INERIS) , Verneuil en Halatte, France.

S-IN Soluzioni Informatiche Srl (S-IN), Vicenza, Italy.

出版信息

Environ Health Perspect. 2017 Jul 19;125(7):077012. doi: 10.1289/EHP742.

Abstract

BACKGROUND

Combining computational toxicology with ExpoCast exposure estimates and ToxCast™ assay data gives us access to predictions of human health risks stemming from exposures to chemical mixtures.

OBJECTIVES

We explored, through mathematical modeling and simulations, the size of potential effects of random mixtures of aromatase inhibitors on the dynamics of women's menstrual cycles.

METHODS

We simulated random exposures to millions of potential mixtures of 86 aromatase inhibitors. A pharmacokinetic model of intake and disposition of the chemicals predicted their internal concentration as a function of time (up to 2 y). A ToxCast™ aromatase assay provided concentration-inhibition relationships for each chemical. The resulting total aromatase inhibition was input to a mathematical model of the hormonal hypothalamus-pituitary-ovarian control of ovulation in women.

RESULTS

Above 10% inhibition of estradiol synthesis by aromatase inhibitors, noticeable (eventually reversible) effects on ovulation were predicted. Exposures to individual chemicals never led to such effects. In our best estimate, ∼10% of the combined exposures simulated had mild to catastrophic impacts on ovulation. A lower bound on that figure, obtained using an optimistic exposure scenario, was 0.3%.

CONCLUSIONS

These results demonstrate the possibility to predict large-scale mixture effects for endocrine disrupters with a predictive toxicology approach that is suitable for high-throughput ranking and risk assessment. The size of the effects predicted is consistent with an increased risk of infertility in women from everyday exposures to our chemical environment. https://doi.org/10.1289/EHP742.

摘要

背景

将计算毒理学与ExpoCast暴露估计值以及ToxCast™检测数据相结合,使我们能够预测因接触化学混合物而产生的人类健康风险。

目的

我们通过数学建模和模拟,探究了芳香酶抑制剂随机混合物对女性月经周期动态的潜在影响大小。

方法

我们模拟了对86种芳香酶抑制剂的数百万种潜在混合物的随机暴露。化学物质摄入和处置的药代动力学模型预测了它们随时间(长达2年)变化的体内浓度。ToxCast™芳香酶检测提供了每种化学物质的浓度-抑制关系。由此产生的总芳香酶抑制作用被输入到女性排卵的激素下丘脑-垂体-卵巢控制的数学模型中。

结果

预测当芳香酶抑制剂对雌二醇合成的抑制超过10%时,会对排卵产生明显(最终可逆)的影响。单独接触化学物质从未导致过此类影响。据我们的最佳估计,模拟的组合暴露中约10%对排卵有轻度至灾难性的影响。使用乐观暴露情景得出的该数字下限为0.3%。

结论

这些结果表明,采用适用于高通量排序和风险评估的预测毒理学方法,可以预测内分泌干扰物的大规模混合物效应。预测的效应大小与女性因日常接触化学环境而导致不孕风险增加相一致。https://doi.org/10.1289/EHP742。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6905/5744692/644f30561cf1/EHP742_f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验