Suppr超能文献

动力学分区机制控制 tenascin-C 的第三个 FnIII 结构域的折叠:单分子水平的证据。

Kinetic partitioning mechanism governs the folding of the third FnIII domain of tenascin-C: evidence at the single-molecule level.

机构信息

Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada V6T 1Z1.

出版信息

J Mol Biol. 2011 Sep 30;412(4):698-709. doi: 10.1016/j.jmb.2011.07.049. Epub 2011 Aug 3.

Abstract

Statistical mechanics and molecular dynamics simulations proposed that the folding of proteins can follow multiple parallel pathways on a rugged energy landscape from unfolded state en route to their folded native states. Kinetic partitioning mechanism is one of the possible mechanisms underlying such complex folding dynamics. Here, we use single-molecule atomic force microscopy technique to directly probe the multiplicity of the folding pathways of the third fibronectin type III domain from the extracellular matrix protein tenascin-C (TNfn3). By stretching individual (TNfn3)(8) molecules, we forced TNfn3 domains to undergo mechanical unfolding and refolding cycles, allowing us to directly observe the folding pathways of TNfn3. We found that, after being mechanically unraveled and then relaxed to zero force, TNfn3 follows multiple parallel pathways to fold into their native states. The majority of TNfn3 fold into the native state in a simple two-state fashion, while a small percentage of TNfn3 were found to be trapped into kinetically stable folding intermediate states with well-defined three-dimensional structures. Furthermore, the folding of TNfn3 was also influenced by its neighboring TNfn3 domains. Complex misfolded states of TNfn3 were observed, possibly due to the formation of domain-swapped dimeric structures. Our studies revealed the ruggedness of the folding energy landscape of TNfn3 and provided direct experimental evidence that the folding dynamics of TNfn3 are governed by the kinetic partitioning mechanism. Our results demonstrated the unique capability of single-molecule AFM to probe the folding dynamics of proteins at the single-molecule level.

摘要

统计力学和分子动力学模拟表明,蛋白质的折叠可以从展开状态沿着崎岖的能量景观沿着多条平行途径进行,最终达到其折叠的天然状态。动力学分配机制是这种复杂折叠动力学的可能机制之一。在这里,我们使用单分子原子力显微镜技术直接探测细胞外基质蛋白 tenascin-C(TNfn3)中第三个纤维连接蛋白 III 结构域的折叠途径的多样性。通过拉伸单个(TNfn3)(8)分子,我们迫使 TNfn3 结构域经历机械展开和重折叠循环,使我们能够直接观察 TNfn3 的折叠途径。我们发现,在被机械解开然后松弛到零力后,TNfn3 沿着多条平行途径折叠成其天然状态。大多数 TNfn3 以简单的两态方式折叠成天然状态,而一小部分 TNfn3 被发现被困在具有明确定三维结构的动力学稳定折叠中间状态。此外,TNfn3 的折叠也受到其相邻 TNfn3 结构域的影响。观察到 TNfn3 的复杂错误折叠状态,可能是由于形成了结构域交换二聚体结构。我们的研究揭示了 TNfn3 折叠能景观的崎岖性,并提供了直接的实验证据,证明 TNfn3 的折叠动力学受动力学分配机制的控制。我们的结果表明,单分子 AFM 具有独特的能力,可以在单分子水平上探测蛋白质的折叠动力学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验