Suppr超能文献

单分子力谱和分子动力学模拟揭示 HP35 的低折叠协同性。

Low folding cooperativity of HP35 revealed by single-molecule force spectroscopy and molecular dynamics simulation.

机构信息

National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing, People's Republic of China.

出版信息

Biophys J. 2012 Apr 18;102(8):1944-51. doi: 10.1016/j.bpj.2012.03.028.

Abstract

Some small proteins, such as HP35, fold at submicrosecond timescale with low folding cooperativity. Although these proteins have been extensively investigated, still relatively little is known about their folding mechanism. Here, using single-molecule force spectroscopy and steered molecule dynamics simulation, we study the unfolding of HP35 under external force. Our results show that HP35 unfolds at extremely low forces without a well-defined unfolding transition state. Subsequently, we probe the structure of unfolded HP35 using the persistence length obtained in the force spectroscopy. We found that the persistence length of unfolded HP35 is around 0.72 nm, >40% longer than typical unstructured proteins, suggesting that there are a significant amount of residual secondary structures in the unfolded HP35. Molecular dynamics simulation further confirmed this finding and revealed that many native contacts are preserved in HP35, even its two ends have been extended up to 8 nm. Our results therefore suggest that retaining a significant amount of secondary structures in the unfolded state of HP35 may be an efficient way to reduce the entropic cost for the formation of tertiary structure and increase the folding speed, although the folding cooperativity is compromised. Moreover, we anticipate that the methods we used in this work can be extended to the study of other proteins with complex folding behaviors and even intrinsically disordered ones.

摘要

一些小蛋白,如 HP35,在亚微秒的时间尺度上折叠,折叠协同性低。尽管这些蛋白质已经被广泛研究,但对于它们的折叠机制仍然知之甚少。在这里,我们使用单分子力谱和导向分子动力学模拟研究了 HP35 在外部力作用下的解折叠。我们的结果表明,HP35 在极低的力下解折叠,没有明确的解折叠过渡态。随后,我们使用力谱中获得的持久长度来探测解折叠的 HP35 的结构。我们发现,解折叠的 HP35 的持久长度约为 0.72nm,比典型的无规卷曲蛋白质长 40%以上,这表明解折叠的 HP35 中存在大量的残留二级结构。分子动力学模拟进一步证实了这一发现,并揭示了即使 HP35 的两端被拉伸到 8nm,其许多天然接触仍被保留。因此,我们的研究结果表明,在 HP35 的解折叠状态下保留大量的二级结构可能是一种有效的方法,可以降低形成三级结构的熵成本并提高折叠速度,尽管折叠协同性受到了影响。此外,我们预计我们在这项工作中使用的方法可以扩展到研究其他具有复杂折叠行为甚至是固有无序的蛋白质。

相似文献

3
Fast dynamics of HP35 for folded and urea-unfolded conditions.快速动力学的 HP35 折叠和脲变性条件。
J Phys Chem B. 2012 Sep 13;116(36):11024-31. doi: 10.1021/jp304058x. Epub 2012 Aug 29.
8
Chaperones rescue luciferase folding by separating its domains.伴侣蛋白通过分离荧光素酶的结构域来拯救其折叠。
J Biol Chem. 2014 Oct 10;289(41):28607-18. doi: 10.1074/jbc.M114.582049. Epub 2014 Aug 26.

引用本文的文献

1
Mechanochemistry: Fundamental Principles and Applications.机械化学:基本原理与应用
Adv Sci (Weinh). 2024 Aug 29:e2403949. doi: 10.1002/advs.202403949.

本文引用的文献

10
A "force buffer" protecting immunoglobulin titin.一种保护免疫球蛋白肌联蛋白的“力缓冲器”。
Angew Chem Int Ed Engl. 2010 May 3;49(20):3528-31. doi: 10.1002/anie.200906388.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验