Suppr超能文献

通过智能控制固定化速率来调节小蛋白质在多孔基质中的分布。

Modulation of the distribution of small proteins within porous matrixes by smart-control of the immobilization rate.

机构信息

Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica-CSIC, Campus UAM, Cantoblanco, Madrid, Spain.

出版信息

J Biotechnol. 2011 Oct 10;155(4):412-20. doi: 10.1016/j.jbiotec.2011.07.039. Epub 2011 Aug 4.

Abstract

The distribution of enzymes attached to porous solid supports is a major concern in multienzymatic bioreactors. Herein, as proof of the concept that protein localization on porous surfaces can be controlled by tuning the protein immobilization rate. We study the distribution of two poly-histidine-tagged fluorescent proteins (His-GFP and His-mCherryFP) immobilized on different 4% crosslinked agarose-type carriers by confocal laser scanning microscopy. In this context, immobilization rate is easily modulated by controlling the (i) nature of physico-chemical interaction between protein and surface (reactive groups on surface), (ii) by controlling the reactive group density and (iii) by adding competitors to the immobilization process. His-GFP is 350-fold more rapid immobilized on agarose surfaces activated with either glyoxyl groups or chelates than the same matrix activated with primary amine groups instead. A similar effect is seen with agarose matrixes activated with lower glyoxyl densities that immobilize His-GFP roughly 350-fold slower than the corresponding highly activated matrix. When His-GFP is immobilized on agarose activated with chelates groups in presence of imidazol which competes with the protein for the reactive groups on the support, the immobilization rate is again 400-fold slower than when the same protein was immobilized on the same support but with no imidazol during the immobilization process. In all cases, it was observed that rapid immobilizations (quantitative immobilization in less than 10min) located 100% of the loaded protein at the crown of the carrier beads, meaning that only the 10% of the bead radius was colonized by the protein. On the contrary, when immobilization is much slower, a homogeneous distribution is obtained, resulting in beads whose whole radius is occupied by the protein. Therefore, we set that the more rapid immobilization, the more heterogeneous distribution. All the knowledge gained in protein distribution by immobilization rate alteration of a single protein is applied to the co-immobilization of the two fluorescent proteins in order to develop four different co-immobilization patterns with an enormous applied potential to other multi-protein systems.

摘要

多孔固体载体上附着的酶的分布是多酶生物反应器的一个主要关注点。在此,作为蛋白质在多孔表面的定位可以通过调节蛋白质固定化速率来控制的概念验证,我们通过共焦激光扫描显微镜研究了两种带有多组氨酸标签的荧光蛋白(His-GFP 和 His-mCherryFP)在不同 4%交联琼脂糖载体上的分布。在这种情况下,固定化速率很容易通过控制(i)蛋白质与表面之间物理化学相互作用的性质(表面上的反应基团)、(ii)通过控制反应基团密度和(iii)在固定化过程中添加竞争物来调节。与用伯胺基团激活的相同基质相比,用乙二醛基团或螯合物激活的琼脂糖表面上固定 His-GFP 的速度快 350 倍。在使用较低乙二醛密度激活的琼脂糖基质上,也观察到了类似的效果,固定 His-GFP 的速度比相应的高活化基质慢约 350 倍。当 His-GFP 在含有与支持物上的反应基团竞争的咪唑的螯合物基团存在下固定在琼脂糖上时,固定化速率再次比相同蛋白质在相同支持物上但在固定化过程中没有咪唑时慢 400 倍。在所有情况下,观察到快速固定化(在不到 10 分钟内定量固定化)将 100%负载的蛋白质定位在载体珠的冠部,这意味着只有 10%的珠半径被蛋白质占据。相反,当固定化速度慢得多时,会得到均匀的分布,导致珠的整个半径都被蛋白质占据。因此,我们设定固定化速度越快,分布越不均匀。通过改变单个蛋白质的固定化速率来改变蛋白质分布的所有知识都应用于两种荧光蛋白的共固定化,以开发具有巨大应用潜力的四种不同的共固定化模式,应用于其他多蛋白系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验