Heterogeneous biocatalysis group, CICbiomaGUNE, Edificio Empresarial "C", Paseo de Miramón, 182, 20014 Donostia-San Sebastián, Spain.
POLYMAT and Departamento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country, UPV/EHU, 20018 Donostia-San Sebastián, Spain.
Molecules. 2019 Jul 30;24(15):2775. doi: 10.3390/molecules24152775.
The immobilization of fluorescent proteins is a key technology enabling to fabricate a new generation of photoactive materials with potential technological applications. Herein we have exploited superfolder green (sGFP) and red (RFP) fluorescent proteins expressed with different polypeptide tags. We fused these fluorescent proteins to His-tags to immobilize them on graphene 3D hydrogels, and Cys-tags to immobilize them on porous microparticles activated with either epoxy or disulfide groups and with Lys-tags to immobilize them on upconverting nanoparticles functionalized with carboxylic groups. Genetically programming sGFP and RFP with Cys-tag and His-tag, respectively, allowed tuning the protein spatial organization either across the porous structure of two microbeads with different functional groups (agarose-based materials activated with metal chelates and epoxy-methacrylate materials) or across the surface of a single microbead functionalized with both metal-chelates and disulfide groups. By using different polypeptide tags, we can control the attachment chemistry but also the localization of the fluorescent proteins across the material surfaces. The resulting photoactive material formed by His-RFP immobilized on graphene hydrogels has been tested as pH indicator to measure pH changes in the alkaline region, although the immobilized fluorescent protein exhibited a narrower dynamic range to measure pH than the soluble fluorescent protein. Likewise, the immobilization of Lys-sGFP on alginate-coated upconverting nanoparticles enabled the infrared excitation of the fluorescent protein to be used as a green light emitter. These novel photoactive biomaterials open new avenues for innovative technological developments towards the fabrication of biosensors and photonic devices.
荧光蛋白的固定化是一项关键技术,可用于制造具有潜在技术应用的新一代光活性材料。在此,我们利用超折叠绿色(sGFP)和红色(RFP)荧光蛋白,表达带有不同多肽标签的蛋白。我们将这些荧光蛋白与 His 标签融合,将其固定在石墨烯 3D 水凝胶上,与 Cys 标签融合,将其固定在带有环氧或二硫键的多孔微球上,并与 Lys 标签融合,将其固定在带有羧酸基团的上转换纳米粒子上。通过分别对 sGFP 和 RFP 进行 Cys 标签和 His 标签的基因编程,可以调节蛋白质的空间组织,横跨具有不同官能团的两个微球的多孔结构(用金属螯合物和环氧甲基丙烯酸酯材料激活的琼脂糖基材料),或横跨同时具有金属螯合物和二硫键官能团的单个微球的表面。通过使用不同的多肽标签,我们可以控制附着化学,但也可以控制荧光蛋白在材料表面的定位。通过将 His-RFP 固定在石墨烯水凝胶上形成的光活性材料已被用作 pH 指示剂,以测量碱性区域的 pH 值变化,尽管固定化荧光蛋白的测量 pH 值的动态范围比可溶性荧光蛋白窄。同样,将 Lys-sGFP 固定在藻酸盐涂层的上转换纳米粒子上,可以实现对荧光蛋白的红外激发,将其用作绿光发射器。这些新型光活性生物材料为创新技术的发展开辟了新途径,可用于制造生物传感器和光子器件。