Santiago-Arcos Javier, Velasco-Lozano Susana, Diamanti Eleftheria, Benítez-Mateos Ana I, Grajales-Hernández Daniel, Paradisi Francesca, López-Gallego Fernando
Heterogeneous Biocatalysis Group, CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009 Donostia, Spain.
Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna, 12, 50009 Zaragoza, Spain.
ACS Sustain Chem Eng. 2024 Jun 10;12(25):9474-9489. doi: 10.1021/acssuschemeng.4c02396. eCollection 2024 Jun 24.
Cell-free biocatalysis is gaining momentum in producing value-added chemicals, particularly in stepwise reaction cascades. However, the stability of enzyme cascades in industrial settings is often compromised when free enzymes are involved. In this study, we have developed a stable multifunctional heterogeneous biocatalyst coimmobilizing five enzymes on microparticles to transform 1,ω-diols into 1,ω-hydroxy acids. We improved the operational efficiency and stability of the heterogeneous biocatalyst by fine-tuning the enzyme loading and spatial organization. Stability issues are overcome through postimmobilization polymer coating. The general applicability of this heterogeneous biocatalyst is demonstrated by its scale-up in both batch and packed bed reactors, allowing a product yield of >80%. The continuous process is fed with HO as the oxygen source, reaching a space-time yield (STY) of 0.76 g·L·h, maintained for the first 12 h. Finally, this flow system is telescoped with a second plug-flow reactor packed with a different heterogeneous biocatalyst integrating an additional transaminase. As a result, this 6-enzyme 2-reactor system sequentially transforms 1,ω-diols into 1,ω-amino acids while recycling NAD, depleting HO, and generating O.
无细胞生物催化在生产高附加值化学品方面正日益受到关注,特别是在逐步反应级联中。然而,当涉及游离酶时,酶级联在工业环境中的稳定性往往会受到影响。在本研究中,我们开发了一种稳定的多功能非均相生物催化剂,将五种酶共固定在微粒上,以将1,ω-二醇转化为1,ω-羟基酸。我们通过微调酶负载量和空间组织来提高非均相生物催化剂的操作效率和稳定性。通过固定后聚合物涂层克服了稳定性问题。这种非均相生物催化剂的普遍适用性通过在间歇式和填充床反应器中的放大实验得到证明,产品产率>80%。连续过程以HO作为氧源进料,时空产率(STY)达到0.76 g·L·h,并在前12小时保持该产率。最后,该流动系统与第二个填充有不同非均相生物催化剂的活塞流反应器串联,该生物催化剂整合了额外的转氨酶。结果,这个6酶2反应器系统将1,ω-二醇依次转化为1,ω-氨基酸,同时循环利用NAD,消耗HO并生成O。