Suppr超能文献

探索胰岛素抵抗小鼠肝脏中的信号通路相互作用。

Exploring pathway interactions in insulin resistant mouse liver.

作者信息

Kelder Thomas, Eijssen Lars, Kleemann Robert, van Erk Marjan, Kooistra Teake, Evelo Chris

机构信息

Department of Bioinformatics, Maastricht University, Maastricht, The Netherlands.

出版信息

BMC Syst Biol. 2011 Aug 15;5:127. doi: 10.1186/1752-0509-5-127.

Abstract

BACKGROUND

Complex phenotypes such as insulin resistance involve different biological pathways that may interact and influence each other. Interpretation of related experimental data would be facilitated by identifying relevant pathway interactions in the context of the dataset.

RESULTS

We developed an analysis approach to study interactions between pathways by integrating gene and protein interaction networks, biological pathway information and high-throughput data. This approach was applied to a transcriptomics dataset to investigate pathway interactions in insulin resistant mouse liver in response to a glucose challenge. We identified regulated pathway interactions at different time points following the glucose challenge and also studied the underlying protein interactions to find possible mechanisms and key proteins involved in pathway cross-talk. A large number of pathway interactions were found for the comparison between the two diet groups at t = 0. The initial response to the glucose challenge (t = 0.6) was typed by an acute stress response and pathway interactions showed large overlap between the two diet groups, while the pathway interaction networks for the late response were more dissimilar.

CONCLUSIONS

Studying pathway interactions provides a new perspective on the data that complements established pathway analysis methods such as enrichment analysis. This study provided new insights in how interactions between pathways may be affected by insulin resistance. In addition, the analysis approach described here can be generally applied to different types of high-throughput data and will therefore be useful for analysis of other complex datasets as well.

摘要

背景

胰岛素抵抗等复杂表型涉及不同的生物学途径,这些途径可能相互作用并相互影响。在数据集的背景下识别相关途径相互作用将有助于对相关实验数据的解释。

结果

我们开发了一种分析方法,通过整合基因和蛋白质相互作用网络、生物学途径信息和高通量数据来研究途径之间的相互作用。该方法应用于一个转录组学数据集,以研究胰岛素抵抗小鼠肝脏在葡萄糖刺激下的途径相互作用。我们确定了葡萄糖刺激后不同时间点的调节途径相互作用,并研究了潜在的蛋白质相互作用,以发现途径串扰中涉及的可能机制和关键蛋白质。在t = 0时,两个饮食组之间的比较发现了大量的途径相互作用。对葡萄糖刺激的初始反应(t = 0.6)以急性应激反应为特征,两个饮食组之间的途径相互作用显示出很大的重叠,而后期反应的途径相互作用网络则更不相似。

结论

研究途径相互作用为数据提供了一个新的视角,补充了如富集分析等已有的途径分析方法。这项研究为途径之间的相互作用如何受胰岛素抵抗影响提供了新的见解。此外,这里描述的分析方法通常可应用于不同类型的高通量数据,因此也将有助于分析其他复杂数据集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/212d/3169508/5cd1b4b6c6ea/1752-0509-5-127-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验