Suppr超能文献

镰状血红蛋白聚合物的生长。

The growth of sickle hemoglobin polymers.

机构信息

Department of Physics, Drexel University, Philadelphia, Pennsylvania, USA.

出版信息

Biophys J. 2011 Aug 17;101(4):885-91. doi: 10.1016/j.bpj.2011.05.064.

Abstract

The measurement of polymer growth is an essential element in characterization of assembly. We have developed a precise method of measuring the growth of sickle hemoglobin polymers by observing the time required for polymers to traverse a photolytically produced channel between a region in which polymers are created and a detection region. The presence of the polymer is functionally detected by observing its ability to create new polymers through the well-established process of heterogeneous nucleation. Using this method, we have determined the rate constants for monomer addition to and release from polymer ends, as well as their temperature dependences. At 25°C we find k(+) = 84 ± 2 mM⁻¹ s⁻¹ and k(-) = 790 ± 80 molecules/s from each end. These numbers are in accord with differential interference contrast measurements, and their ratio gives a solubility measured on individual fibers. The single-fiber solubility agrees with that measured in sedimentation experiments. The concentration dependence of the monomer addition rate is consistent with monomer addition, but not oligomer addition, to growing polymers. The concentration dependence suggests the presence of an activation enthalpy barrier, and the rate of monomer addition is not diffusion-limited. Analysis of the temperature dependence of the monomer addition rate reveals an apparent activation energy of 9.1 ± 0.6 kcal/mol.

摘要

聚合物生长的测量是组装特性分析的基本要素。我们开发了一种精确的方法,通过观察聚合物在光解产生的通道中从聚合物生成区域到检测区域所需的时间来测量镰状血红蛋白聚合物的生长。聚合物的存在通过观察其通过成熟的异质成核过程形成新聚合物的能力来功能检测。使用这种方法,我们确定了单体添加到聚合物末端和从聚合物末端释放的速率常数及其温度依赖性。在 25°C 下,我们从每个末端发现 k(+) = 84 ± 2 mM⁻¹ s⁻¹ 和 k(-) = 790 ± 80 个分子/s。这些数字与微分干涉对比测量一致,并且它们的比值给出了在单个纤维上测量的溶解度。单纤维溶解度与沉降实验中测量的溶解度一致。单体添加速率的浓度依赖性与单体向生长聚合物的添加一致,但与低聚物的添加不一致。浓度依赖性表明存在活化焓垒,并且单体添加的速率不是扩散限制的。单体添加速率的温度依赖性分析揭示了 9.1 ± 0.6 kcal/mol 的表观活化能。

相似文献

1
The growth of sickle hemoglobin polymers.
Biophys J. 2011 Aug 17;101(4):885-91. doi: 10.1016/j.bpj.2011.05.064.
2
The kinetics of nucleation and growth of sickle cell hemoglobin fibers.
J Mol Biol. 2007 Jan 12;365(2):425-39. doi: 10.1016/j.jmb.2006.10.001. Epub 2006 Oct 5.
4
Homogeneous nucleation in sickle hemoglobin: stochastic measurements with a parallel method.
Biophys J. 1997 Jan;72(1):343-52. doi: 10.1016/S0006-3495(97)78673-9.
5
Monomer diffusion into polymer domains in sickle hemoglobin.
Biophys J. 1990 Oct;58(4):1067-73. doi: 10.1016/S0006-3495(90)82449-8.
7
Universal metastability of sickle hemoglobin polymerization.
J Mol Biol. 2008 Apr 4;377(4):1228-35. doi: 10.1016/j.jmb.2008.01.083. Epub 2008 Feb 5.
9
Nucleation and polymerization of sickle hemoglobin with Leu beta 88 substituted by Ala.
J Mol Biol. 1997 Feb 7;265(5):580-9. doi: 10.1006/jmbi.1996.0749.
10
Theoretical description of the spatial dependence of sickle hemoglobin polymerization.
Biophys J. 1990 Sep;58(3):695-703. doi: 10.1016/S0006-3495(90)82412-7.

引用本文的文献

1
Voxelotor does not inhibit sickle hemoglobin fiber formation upon complete deoxygenation.
Biophys J. 2023 Jul 11;122(13):2782-2790. doi: 10.1016/j.bpj.2023.05.034. Epub 2023 Jun 2.
2
Fluorescence Lifetime Measurement of Prefibrillar Sickle Hemoglobin Oligomers as a Platform for Drug Discovery in Sickle Cell Disease.
Biomacromolecules. 2022 Sep 12;23(9):3822-3830. doi: 10.1021/acs.biomac.2c00671. Epub 2022 Aug 9.
3
An Experimental-Computational Approach to Quantify Blood Rheology in Sickle Cell Disease.
Biophys J. 2020 Dec 1;119(11):2307-2315. doi: 10.1016/j.bpj.2020.10.011. Epub 2020 Oct 20.
4
Quantitative prediction of erythrocyte sickling for the development of advanced sickle cell therapies.
Sci Adv. 2019 Aug 21;5(8):eaax3905. doi: 10.1126/sciadv.aax3905. eCollection 2019 Aug.
5
Rapid and inefficient kinetics of sickle hemoglobin fiber growth.
Sci Adv. 2019 Mar 13;5(3):eaau1086. doi: 10.1126/sciadv.aau1086. eCollection 2019 Mar.
6
Cooperative Assembly of Hsp70 Subdomain Clusters.
Biochemistry. 2018 Jul 3;57(26):3641-3649. doi: 10.1021/acs.biochem.8b00151. Epub 2018 May 29.
7
Molecular insights into the irreversible mechanical behavior of sickle hemoglobin.
J Biomol Struct Dyn. 2019 Mar;37(5):1270-1281. doi: 10.1080/07391102.2018.1456362. Epub 2018 May 4.
8
Mesoscopic Adaptive Resolution Scheme toward Understanding of Interactions between Sickle Cell Fibers.
Biophys J. 2017 Jul 11;113(1):48-59. doi: 10.1016/j.bpj.2017.05.050.
9
Ratchets, red cells, and metastability.
Biophys Rev. 2013 Jun;5(2):217-224. doi: 10.1007/s12551-013-0117-z. Epub 2013 Apr 18.
10
Probing the Twisted Structure of Sickle Hemoglobin Fibers via Particle Simulations.
Biophys J. 2016 May 10;110(9):2085-93. doi: 10.1016/j.bpj.2016.04.002.

本文引用的文献

1
How Can Hydrophobic Association Be Enthalpy Driven?
J Chem Theory Comput. 2010 Sep 14;6(9):2866-2871. doi: 10.1021/ct1003077. Epub 2010 Aug 24.
2
Amyloid protofibrils of lysozyme nucleate and grow via oligomer fusion.
Biophys J. 2009 May 6;96(9):3781-90. doi: 10.1016/j.bpj.2009.01.044.
3
Universal metastability of sickle hemoglobin polymerization.
J Mol Biol. 2008 Apr 4;377(4):1228-35. doi: 10.1016/j.jmb.2008.01.083. Epub 2008 Feb 5.
4
Kinetics and thermodynamics of amyloid formation from direct measurements of fluctuations in fibril mass.
Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10016-21. doi: 10.1073/pnas.0610659104. Epub 2007 May 31.
5
Metastable polymerization of sickle hemoglobin in droplets.
J Mol Biol. 2007 Jun 22;369(5):1170-4. doi: 10.1016/j.jmb.2007.04.030. Epub 2007 Apr 19.
6
The kinetics of nucleation and growth of sickle cell hemoglobin fibers.
J Mol Biol. 2007 Jan 12;365(2):425-39. doi: 10.1016/j.jmb.2006.10.001. Epub 2006 Oct 5.
7
Understanding the shape of sickled red cells.
Biophys J. 2005 Feb;88(2):1371-6. doi: 10.1529/biophysj.104.051250. Epub 2004 Nov 12.
8
Crowding and the polymerization of sickle hemoglobin.
J Mol Recognit. 2004 Sep-Oct;17(5):497-504. doi: 10.1002/jmr.698.
9
Sickle hemoglobin fibers: mechanisms of depolymerization.
J Mol Biol. 2002 Sep 13;322(2):395-412. doi: 10.1016/s0022-2836(02)00770-2.
10
Micromechanics of isolated sickle cell hemoglobin fibers: bending moduli and persistence lengths.
J Mol Biol. 2002 Jan 25;315(4):601-12. doi: 10.1006/jmbi.2001.5130.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验