Suppr超能文献

一种用于量化镰状细胞病中血液流变学的实验-计算方法。

An Experimental-Computational Approach to Quantify Blood Rheology in Sickle Cell Disease.

机构信息

Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota.

Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota.

出版信息

Biophys J. 2020 Dec 1;119(11):2307-2315. doi: 10.1016/j.bpj.2020.10.011. Epub 2020 Oct 20.

Abstract

In sickle cell disease, aberrant blood flow due to oxygen-dependent changes in red cell biomechanics is a key driver of pathology. Most studies to date have focused on the potential role of altered red cell deformability and blood rheology in precipitating vaso-occlusive crises. Numerous studies, however, have shown that sickle blood flow is affected even at high oxygen tensions, suggesting a potentially systemic role for altered blood flow in driving pathologies, including endothelial dysfunction, ischemia, and stroke. In this study, we applied a combined experimental-computation approach that leveraged an experimental platform that quantifies sickle blood velocity fields under a range of oxygen tensions and shear rates. We computationally fitted a continuum model to our experimental data to generate physics-based parameters that capture patient-specific rheological alterations. Our results suggest that sickle blood flow is altered systemically, from the arterial to the venous circulation. We also demonstrated the application of this approach as a tool to design patient-specific transfusion regimens. Finally, we demonstrated that patient-specific rheological parameters can be combined with patient-derived vascular models to identify patients who are at higher risk for cerebrovascular complications such as aneurysm and stroke. Overall, this study highlights that sickle blood flow is altered systemically, which can drive numerous pathologies, and this study demonstrates the potential utility of an experimentally parameterized continuum model as a predictive tool for patient-specific care.

摘要

在镰状细胞病中,由于红细胞生物力学的氧依赖性变化导致的异常血流是病理的主要驱动因素。迄今为止,大多数研究都集中在改变的红细胞变形能力和血液流变学在引发血管阻塞性危象中的潜在作用上。然而,许多研究表明,即使在高氧张力下,镰状血也会受到影响,这表明改变的血流在驱动包括内皮功能障碍、缺血和中风在内的病理方面可能具有潜在的全身性作用。在这项研究中,我们应用了一种结合实验和计算的方法,该方法利用了一个实验平台,该平台可在一系列氧张力和剪切率下量化镰状血的速度场。我们通过计算将连续介质模型拟合到我们的实验数据中,生成基于物理的参数,这些参数可捕捉患者特定的流变学改变。我们的结果表明,镰状血的流动从动脉到静脉循环都发生了系统性的改变。我们还展示了这种方法作为设计针对患者的输血方案的工具的应用。最后,我们证明了可以将患者特异性的流变学参数与患者衍生的血管模型相结合,以识别出患有脑血管并发症(如动脉瘤和中风)风险较高的患者。总体而言,这项研究强调了镰状血的流动在系统性上发生了改变,这可能会引发许多病理变化,并且该研究证明了基于实验参数化的连续介质模型作为针对患者的特定护理的预测工具的潜在用途。

相似文献

3
Rheology of the sickle cell disorders.镰状细胞疾病的流变学
Baillieres Clin Haematol. 1987 Sep;1(3):747-75. doi: 10.1016/s0950-3536(87)80023-9.
4
Blood rheological abnormalities in sickle cell anemia.镰状细胞贫血中的血液流变学异常。
Clin Hemorheol Microcirc. 2018;68(2-3):165-172. doi: 10.3233/CH-189005.

引用本文的文献

1
Mathematical modeling of SCD: a literature review.镰状细胞病的数学建模:文献综述
J Sick Cell Dis. 2025 Apr 16;2(1):yoaf015. doi: 10.1093/jscdis/yoaf015. eCollection 2025.
3
Cardiovascular consequences of sickle cell disease.镰状细胞病的心血管后果。
Biophys Rev (Melville). 2022 Aug 8;3(3):031302. doi: 10.1063/5.0094650. eCollection 2022 Sep.

本文引用的文献

4
Simultaneous polymerization and adhesion under hypoxia in sickle cell disease.镰状细胞病中缺氧下的聚合和黏附的同步化。
Proc Natl Acad Sci U S A. 2018 Sep 18;115(38):9473-9478. doi: 10.1073/pnas.1807405115. Epub 2018 Sep 6.
8
Sickle Cell Disease.镰状细胞病
N Engl J Med. 2017 Apr 20;376(16):1561-1573. doi: 10.1056/NEJMra1510865.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验