Suppr超能文献

通过直接测量纤维质量波动研究淀粉样蛋白形成的动力学和热力学

Kinetics and thermodynamics of amyloid formation from direct measurements of fluctuations in fibril mass.

作者信息

Knowles Tuomas P J, Shu Wenmiao, Devlin Glyn L, Meehan Sarah, Auer Stefan, Dobson Christopher M, Welland Mark E

机构信息

Nanoscience Centre, University of Cambridge, JJ Thomson Avenue, Cambridge, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10016-21. doi: 10.1073/pnas.0610659104. Epub 2007 May 31.

Abstract

Aggregation of proteins and peptides is a widespread and much-studied problem, with serious implications in contexts ranging from biotechnology to human disease. An understanding of the proliferation of such aggregates under specific conditions requires a quantitative knowledge of the kinetics and thermodynamics of their formation; measurements that to date have remained elusive. Here, we show that precise determination of the growth rates of ordered protein aggregates such as amyloid fibrils can be achieved through real-time monitoring, using a quartz crystal oscillator, of the changes in the numbers of molecules in the fibrils from variations in their masses. We show further that this approach allows the effect of other molecular species on fibril growth to be characterized quantitatively. This method is widely applicable, and we illustrate its power by exploring the free-energy landscape associated with the conversion of the protein insulin to its amyloid form and elucidate the role of a chemical chaperone and a small heat shock protein in inhibiting the aggregation reaction.

摘要

蛋白质和肽的聚集是一个广泛且被深入研究的问题,在从生物技术到人类疾病等诸多领域都有着严重影响。要了解此类聚集体在特定条件下的增殖情况,需要对其形成的动力学和热力学有定量认识;而迄今为止,此类测量仍难以实现。在此,我们表明,通过使用石英晶体振荡器实时监测淀粉样纤维等有序蛋白质聚集体中分子数量因质量变化而产生的改变,能够精确测定其生长速率。我们还进一步表明,这种方法能够对其他分子种类对纤维生长的影响进行定量表征。该方法具有广泛适用性,我们通过探索与蛋白质胰岛素向其淀粉样形式转化相关的自由能景观来展示其功效,并阐明化学伴侣和小热休克蛋白在抑制聚集反应中的作用。

相似文献

1
Kinetics and thermodynamics of amyloid formation from direct measurements of fluctuations in fibril mass.
Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10016-21. doi: 10.1073/pnas.0610659104. Epub 2007 May 31.
3
Thermodynamics of amyloid fibril formation from non-equilibrium experiments of growth and dissociation.
Biophys Chem. 2021 Apr;271:106549. doi: 10.1016/j.bpc.2021.106549. Epub 2021 Jan 29.
4
Lability landscape and protease resistance of human insulin amyloid: a new insight into its molecular properties.
J Mol Biol. 2010 Feb 12;396(1):60-74. doi: 10.1016/j.jmb.2009.11.012. Epub 2009 Nov 11.
5
6
Dual effect of non-ionic detergent Triton X-100 on insulin amyloid formation.
Colloids Surf B Biointerfaces. 2019 Jan 1;173:709-718. doi: 10.1016/j.colsurfb.2018.10.039. Epub 2018 Oct 18.
7
Solvational tuning of the unfolding, aggregation and amyloidogenesis of insulin.
J Mol Biol. 2005 Aug 26;351(4):879-94. doi: 10.1016/j.jmb.2005.06.046.
8
Early events in insulin fibrillization studied by time-lapse atomic force microscopy.
Biophys J. 2006 Jan 15;90(2):589-97. doi: 10.1529/biophysj.105.068833. Epub 2005 Oct 20.

引用本文的文献

1
Probing the effect of the disordered flank regions on amyloid fibril growth and proliferation.
RSC Adv. 2025 Jun 18;15(26):20668-20681. doi: 10.1039/d5ra01654a. eCollection 2025 Jun 16.
3
Aging-dependent evolving electrochemical potentials of biomolecular condensates regulate their physicochemical activities.
Nat Chem. 2025 May;17(5):756-766. doi: 10.1038/s41557-025-01762-7. Epub 2025 Mar 12.
5
Competing addition processes give distinct growth regimes in the assembly of 1D filaments.
Biophys J. 2025 Mar 4;124(5):778-788. doi: 10.1016/j.bpj.2025.01.018. Epub 2025 Jan 28.
6
The mechanism of amyloid fibril growth from Φ-value analysis.
Nat Chem. 2025 Mar;17(3):403-411. doi: 10.1038/s41557-024-01712-9. Epub 2025 Jan 16.
7
Unlocking the electrochemical functions of biomolecular condensates.
Nat Chem Biol. 2024 Nov;20(11):1420-1433. doi: 10.1038/s41589-024-01717-y. Epub 2024 Sep 26.
8
Islet amyloid polypeptide fibril catalyzes amyloid-β aggregation by promoting fibril nucleation rather than direct axial growth.
Int J Biol Macromol. 2024 Nov;279(Pt 1):135137. doi: 10.1016/j.ijbiomac.2024.135137. Epub 2024 Aug 27.
10
Tunable metastability of condensates reconciles their dual roles in amyloid fibril formation.
bioRxiv. 2025 Mar 22:2024.02.28.582569. doi: 10.1101/2024.02.28.582569.

本文引用的文献

1
Monomer adds to preformed structured oligomers of Abeta-peptides by a two-stage dock-lock mechanism.
Proc Natl Acad Sci U S A. 2007 Jan 2;104(1):111-6. doi: 10.1073/pnas.0607440104. Epub 2006 Dec 26.
2
Convenient method for monitoring Abeta aggregation by quartz-crystal microbalance.
Chem Biol Drug Des. 2006 Nov;68(5):273-5. doi: 10.1111/j.1747-0285.2006.00446.x.
3
Kinetics of different processes in human insulin amyloid formation.
J Mol Biol. 2007 Feb 9;366(1):258-74. doi: 10.1016/j.jmb.2006.11.008. Epub 2006 Nov 9.
4
Characterization of the nanoscale properties of individual amyloid fibrils.
Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):15806-11. doi: 10.1073/pnas.0604035103. Epub 2006 Oct 12.
5
The physical basis of how prion conformations determine strain phenotypes.
Nature. 2006 Aug 3;442(7102):585-9. doi: 10.1038/nature04922. Epub 2006 Jun 28.
6
Optical microscopy of growing insulin amyloid spherulites on surfaces in vitro.
Biophys J. 2006 Feb 1;90(3):1043-54. doi: 10.1529/biophysj.105.072660. Epub 2005 Nov 4.
7
Thermodynamics of A beta(1-40) amyloid fibril elongation.
Biochemistry. 2005 Sep 27;44(38):12709-18. doi: 10.1021/bi050927h.
8
Multiple assembly pathways underlie amyloid-beta fibril polymorphisms.
J Mol Biol. 2005 Sep 16;352(2):282-98. doi: 10.1016/j.jmb.2005.07.029.
10
Rational design of aggregation-resistant bioactive peptides: reengineering human calcitonin.
Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10105-10. doi: 10.1073/pnas.0501215102. Epub 2005 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验