Suppr超能文献

通量体:一种用于13C代谢通量分析的新方法。

Fluxomers: a new approach for 13C metabolic flux analysis.

作者信息

Srour Orr, Young Jamey D, Eldar Yonina C

机构信息

Dept. of Electrical Engineering, Technion-Israel Institute of Technology, Haifa, Israel.

出版信息

BMC Syst Biol. 2011 Aug 16;5:129. doi: 10.1186/1752-0509-5-129.

Abstract

BACKGROUND

The ability to perform quantitative studies using isotope tracers and metabolic flux analysis (MFA) is critical for detecting pathway bottlenecks and elucidating network regulation in biological systems, especially those that have been engineered to alter their native metabolic capacities. Mathematically, MFA models are traditionally formulated using separate state variables for reaction fluxes and isotopomer abundances. Analysis of isotope labeling experiments using this set of variables results in a non-convex optimization problem that suffers from both implementation complexity and convergence problems.

RESULTS

This article addresses the mathematical and computational formulation of (13)C MFA models using a new set of variables referred to as fluxomers. These composite variables combine both fluxes and isotopomer abundances, which results in a simply-posed formulation and an improved error model that is insensitive to isotopomer measurement normalization. A powerful fluxomer iterative algorithm (FIA) is developed and applied to solve the MFA optimization problem. For moderate-sized networks, the algorithm is shown to outperform the commonly used 13CFLUX cumomer-based algorithm and the more recently introduced OpenFLUX software that relies upon an elementary metabolite unit (EMU) network decomposition, both in terms of convergence time and output variability.

CONCLUSIONS

Substantial improvements in convergence time and statistical quality of results can be achieved by applying fluxomer variables and the FIA algorithm to compute best-fit solutions to MFA models. We expect that the fluxomer formulation will provide a more suitable basis for future algorithms that analyze very large scale networks and design optimal isotope labeling experiments.

摘要

背景

使用同位素示踪剂和代谢通量分析(MFA)进行定量研究的能力对于检测生物系统中的途径瓶颈和阐明网络调控至关重要,特别是对于那些经过工程改造以改变其天然代谢能力的系统。从数学上讲,传统的MFA模型是使用反应通量和同位素异构体丰度的单独状态变量来制定的。使用这组变量对同位素标记实验进行分析会导致一个非凸优化问题,该问题存在实现复杂性和收敛问题。

结果

本文使用一组称为通量异构体的新变量来阐述(13)C MFA模型的数学和计算方法。这些复合变量结合了通量和同位素异构体丰度,从而得到一个简单的公式和一个改进的误差模型,该模型对同位素异构体测量归一化不敏感。开发了一种强大的通量异构体迭代算法(FIA)并将其应用于解决MFA优化问题。对于中等规模的网络,在收敛时间和输出变异性方面,该算法均优于常用的基于13CFLUX累积异构体的算法以及最近推出的依赖基本代谢物单元(EMU)网络分解的OpenFLUX软件。

结论

通过应用通量异构体变量和FIA算法来计算MFA模型的最佳拟合解,可以在收敛时间和结果的统计质量方面取得显著改进。我们预计,通量异构体公式将为未来分析超大规模网络和设计最佳同位素标记实验的算法提供更合适的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6888/3750106/ed73092e1964/1752-0509-5-129-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验