Laboratory of Molecular Neurodegenerative Research, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Antioxid Redox Signal. 2012 May 1;16(9):896-919. doi: 10.1089/ars.2011.4200. Epub 2011 Oct 4.
Mitochondria are highly dynamic, multifunctional organelles. Aside from their major role in energy metabolism, they are also crucial for many cellular processes including neurotransmission, synaptic maintenance, calcium homeostasis, cell death, and neuronal survival.
Increasing evidence supports a role for abnormal mitochondrial function in the molecular pathophysiology of Parkinson's disease (PD). For three decades we have known that mitochondrial toxins are capable of producing clinical parkinsonism in humans. PD is the most common neurodegenerative movement disorder that is characterized by the progressive loss of substantia nigra dopaminergic neurons leading to a deficiency of striatal dopamine. Although the neuropathology underlying the disease is well defined, it remains unclear why nigral dopaminergic neurons degenerate and die.
Most PD cases are idiopathic, but there are rare familial cases. Mutations in five genes are known to unambiguously cause monogenic familial PD: α-synuclein, parkin, DJ-1, PTEN-induced kinase 1 (PINK1), and leucine-rich repeat kinase 2 (LRRK2). These key molecular players are proteins of seemingly diverse function, but with potentially important roles in mitochondrial maintenance and function. Cell and animal-based genetic models have provided indispensable tools for understanding the molecular basis of PD, and have provided additional evidence implicating mitochondrial dysfunction as a primary pathogenic pathway leading to the demise of dopaminergic neurons in PD.
Here, we critically discuss the evidence for mitochondrial dysfunction in genetic animal models of PD, and evaluate whether abnormal mitochondrial function represents a cause or consequence of disease pathogenesis.
Mitochondria may represent a potential target for the development of disease-modifying therapies.
线粒体是高度动态的、多功能的细胞器。除了在能量代谢中的主要作用外,它们对于许多细胞过程也至关重要,包括神经递质传递、突触维持、钙稳态、细胞死亡和神经元存活。
越来越多的证据支持线粒体功能异常在帕金森病(PD)的分子病理生理学中的作用。三十年来,我们已经知道线粒体毒素能够在人类中产生临床帕金森病。PD 是最常见的神经退行性运动障碍,其特征是黑质多巴胺能神经元进行性丧失,导致纹状体多巴胺缺乏。尽管该疾病的神经病理学已得到很好的定义,但仍不清楚为什么黑质多巴胺能神经元会退化和死亡。
大多数 PD 病例是特发性的,但也有罕见的家族病例。已知有五个基因的突变可明确导致单基因家族性 PD:α-突触核蛋白、Parkin、DJ-1、PTEN 诱导的激酶 1(PINK1)和富亮氨酸重复激酶 2(LRRK2)。这些关键的分子参与者是功能似乎不同的蛋白质,但它们在维持和功能方面可能具有重要作用线粒体。基于细胞和动物的遗传模型为理解 PD 的分子基础提供了不可或缺的工具,并提供了更多的证据表明线粒体功能障碍是导致 PD 中多巴胺能神经元死亡的主要致病途径。
在这里,我们批判性地讨论了 PD 遗传动物模型中线粒体功能障碍的证据,并评估了异常线粒体功能是否代表疾病发病机制的原因或后果。
线粒体可能代表着开发疾病修饰疗法的潜在靶点。