Suppr超能文献

线粒体动力学和功能受损在帕金森病发病机制中的作用

Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson's disease.

作者信息

Büeler Hansruedi

机构信息

Department of Anatomy and Neurobiology, University of Kentucky, Lexington, 40536, USA.

出版信息

Exp Neurol. 2009 Aug;218(2):235-46. doi: 10.1016/j.expneurol.2009.03.006. Epub 2009 Mar 18.

Abstract

Parkinson's disease (PD), the most frequent movement disorder, is caused by the progressive loss of the dopamine neurons within the substantia nigra pars compacta (SNc) and the associated deficiency of the neurotransmitter dopamine in the striatum. Most cases of PD occur sporadically with unknown cause, but mutations in several genes have been linked to genetic forms of PD (alpha-synuclein, Parkin, DJ-1, PINK1, and LRRK2). These genes have provided exciting new avenues to study PD pathogenesis and the mechanisms underlying the selective dopaminergic neuron death in PD. Epidemiological studies in humans, as well as molecular studies in toxin-induced and genetic animal models of PD show that mitochondrial dysfunction is a defect occurring early in the pathogenesis of both sporadic and familial PD. Mitochondrial dynamics (fission, fusion, migration) is important for neurotransmission, synaptic maintenance and neuronal survival. Recent studies have shown that PINK1 and Parkin play crucial roles in the regulation of mitochondrial dynamics and function. Mutations in DJ-1 and Parkin render animals more susceptible to oxidative stress and mitochondrial toxins implicated in sporadic PD, lending support to the hypothesis that some PD cases may be caused by gene-environmental factor interactions. A small proportion of alpha-synuclein is imported into mitochondria, where it accumulates in the brains of PD patients and may impair respiratory complex I activity. Accumulation of clonal, somatic mitochondrial DNA deletions has been observed in the substantia nigra during aging and in PD, suggesting that mitochondrial DNA mutations in some instances may pre-dispose to dopamine neuron death by impairing respiration. Besides compromising cellular energy production, mitochondrial dysfunction is associated with the generation of oxidative stress, and dysfunctional mitochondria more readily mediate the induction of apoptosis, especially in the face of cellular stress. Collectively, the studies examined and summarized here reveal an important causal role for mitochondrial dysfunction in PD pathogenesis, and suggest that drugs and genetic approaches with the ability to modulate mitochondrial dynamics, function and biogenesis may have important clinical applications in the future treatment of PD.

摘要

帕金森病(PD)是最常见的运动障碍性疾病,由黑质致密部(SNc)内多巴胺能神经元的渐进性丧失以及纹状体内神经递质多巴胺的相关缺乏所致。大多数PD病例为散发性,病因不明,但多个基因的突变已与PD的遗传形式相关联(α-突触核蛋白、帕金蛋白、DJ-1、PINK1和亮氨酸重复激酶2)。这些基因提供了令人兴奋的新途径,用于研究PD的发病机制以及PD中选择性多巴胺能神经元死亡的潜在机制。人类的流行病学研究以及毒素诱导和遗传动物模型的PD分子研究表明,线粒体功能障碍是散发性和家族性PD发病机制中早期出现的缺陷。线粒体动力学(分裂、融合、迁移)对于神经传递、突触维持和神经元存活至关重要。最近的研究表明,PINK1和帕金蛋白在调节线粒体动力学和功能方面发挥着关键作用。DJ-1和帕金蛋白的突变使动物更容易受到散发性PD中涉及的氧化应激和线粒体毒素的影响,这支持了某些PD病例可能由基因-环境因素相互作用引起的假说。一小部分α-突触核蛋白被导入线粒体,在PD患者的大脑中积累,并可能损害呼吸复合体I的活性。在衰老过程中和PD患者的黑质中观察到克隆性、体细胞线粒体DNA缺失的积累,这表明线粒体DNA突变在某些情况下可能通过损害呼吸作用而导致多巴胺能神经元死亡。除了损害细胞能量产生外,线粒体功能障碍还与氧化应激的产生有关,功能失调的线粒体更容易介导细胞凋亡的诱导,尤其是在细胞应激的情况下。总体而言,本文研究和总结的内容揭示了线粒体功能障碍在PD发病机制中的重要因果作用,并表明能够调节线粒体动力学、功能和生物发生的药物和基因方法可能在未来PD治疗中具有重要的临床应用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验