EMBL European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
BMC Bioinformatics. 2011 Aug 17;12:342. doi: 10.1186/1471-2105-12-342.
Systematic measurement of genetic interactions by combinatorial RNAi (co-RNAi) is a powerful tool for mapping functional modules and discovering components. It also provides insights into the role of epistasis on the way from genotype to phenotype. The interpretation of co-RNAi data requires computational and statistical analysis in order to detect interactions reliably and sensitively.
We present a comprehensive approach to the analysis of univariate phenotype measurements, such as cell growth. The method is based on a quantitative model and is demonstrated on two example Drosophila cell culture data sets. We discuss adjustments for technical variability, data quality assessment, model parameter fitting and fit diagnostics, choice of scale, and assessment of statistical significance.
As a result, we obtain quantitative genetic interactions and interaction networks reflecting known biological relationships between target genes. The reliable extraction of presence, absence, and strength of interactions provides insights into molecular mechanisms.
通过组合 RNAi(co-RNAi)系统地测量遗传相互作用是绘制功能模块和发现组件的有力工具。它还深入了解了从基因型到表型的上位性的作用。为了可靠和敏感地检测相互作用,需要对 co-RNAi 数据进行计算和统计分析。
我们提出了一种分析单变量表型测量(如细胞生长)的综合方法。该方法基于定量模型,并在两个果蝇细胞培养数据集上进行了演示。我们讨论了针对技术变异性、数据质量评估、模型参数拟合和拟合诊断、比例选择以及统计显著性评估的调整。
结果,我们获得了定量的遗传相互作用和相互作用网络,反映了目标基因之间已知的生物学关系。相互作用的存在、不存在和强度的可靠提取提供了对分子机制的深入了解。