Cancer Research UK, Beatson Institute for Cancer Research, Switchback Road, Glasgow G61 1BD, UK.
Nature. 2011 Aug 17;477(7363):225-8. doi: 10.1038/nature10363.
Fumarate hydratase (FH) is an enzyme of the tricarboxylic acid cycle (TCA cycle) that catalyses the hydration of fumarate into malate. Germline mutations of FH are responsible for hereditary leiomyomatosis and renal-cell cancer (HLRCC). It has previously been demonstrated that the absence of FH leads to the accumulation of fumarate, which activates hypoxia-inducible factors (HIFs) at normal oxygen tensions. However, so far no mechanism that explains the ability of cells to survive without a functional TCA cycle has been provided. Here we use newly characterized genetically modified kidney mouse cells in which Fh1 has been deleted, and apply a newly developed computer model of the metabolism of these cells to predict and experimentally validate a linear metabolic pathway beginning with glutamine uptake and ending with bilirubin excretion from Fh1-deficient cells. This pathway, which involves the biosynthesis and degradation of haem, enables Fh1-deficient cells to use the accumulated TCA cycle metabolites and permits partial mitochondrial NADH production. We predicted and confirmed that targeting this pathway would render Fh1-deficient cells non-viable, while sparing wild-type Fh1-containing cells. This work goes beyond identifying a metabolic pathway that is induced in Fh1-deficient cells to demonstrate that inhibition of haem oxygenation is synthetically lethal when combined with Fh1 deficiency, providing a new potential target for treating HLRCC patients.
延胡索酸水合酶(FH)是三羧酸循环(TCA 循环)中的一种酶,可催化延胡索酸水合生成苹果酸。FH 的种系突变负责遗传性平滑肌瘤病和肾细胞癌(HLRCC)。先前已经证明,FH 的缺失会导致富马酸的积累,从而在正常氧张力下激活缺氧诱导因子(HIFs)。然而,到目前为止,还没有提供一种能够解释细胞在没有功能性 TCA 循环的情况下仍然能够存活的机制。在这里,我们使用新鉴定的遗传修饰的肾小鼠细胞,其中 Fh1 已被删除,并应用新开发的这些细胞代谢计算机模型来预测和实验验证从 Fh1 缺陷细胞开始的线性代谢途径,该途径涉及到血红素的生物合成和降解,使 Fh1 缺陷细胞能够利用积累的 TCA 循环代谢物,并允许部分线粒体 NADH 产生。我们预测并证实,靶向这条途径会使 Fh1 缺陷细胞失去活力,而野生型 Fh1 细胞则不受影响。这项工作不仅确定了在 Fh1 缺陷细胞中诱导的代谢途径,还证明了血红素加氧酶的抑制与 Fh1 缺陷相结合具有合成致死性,为治疗 HLRCC 患者提供了一个新的潜在靶点。