Moyer Devlin C, Reimertz Justin, Segrè Daniel, Fuxman Bass Juan I
Bioinformatics Program, Boston University, Boston, MA, 02215, USA.
Department of Biology, Boston University, Boston, MA, 02215, USA.
Genome Biol. 2025 Mar 28;26(1):79. doi: 10.1186/s13059-025-03533-6.
Genome-scale metabolic models (GSMMs) are used to predict metabolic fluxes, with applications ranging from identifying novel drug targets to engineering microbial metabolism. Erroneous or missing reactions, scattered throughout densely interconnected networks, are a limiting factor in these applications. We present Metabolic Accuracy Check and Analysis Workflow (MACAW), a suite of algorithms that helps to identify and visualize errors at the level of connected pathways, rather than individual reactions. We show how MACAW highlights inaccuracies of varying severity in manually curated and automatically generated GSMMs for humans, yeast, and bacteria and helps to identify systematic issues to be addressed in future model construction efforts.
基因组规模代谢模型(GSMMs)用于预测代谢通量,其应用范围从识别新的药物靶点到工程化微生物代谢。错误或缺失的反应散布在高度互联的网络中,是这些应用中的一个限制因素。我们提出了代谢准确性检查与分析工作流程(MACAW),这是一套算法,有助于在连通途径层面而非单个反应层面识别和可视化错误。我们展示了MACAW如何突出显示在人工策划和自动生成的人类、酵母和细菌的GSMMs中不同严重程度的不准确之处,并有助于识别未来模型构建工作中需要解决的系统性问题。