Mora Ariane, Schmidt Christina, Balderson Brad, Frezza Christian, Bodén Mikael
School of Chemistry and Molecular Biosciences, University of Queensland, Molecular Biosciences Building 76, St Lucia, QLD, 4072, Australia.
Medical Research Council Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge Biomedical Campus, Box 197, Cambridge, CB2 0X2, UK.
Genome Med. 2024 Dec 4;16(1):144. doi: 10.1186/s13073-024-01415-3.
Clear cell renal cell carcinoma (ccRCC) tumours develop and progress via complex remodelling of the kidney epigenome, transcriptome, proteome and metabolome. Given the subsequent tumour and inter-patient heterogeneity, drug-based treatments report limited success, calling for multi-omics studies to extract regulatory relationships, and ultimately, to develop targeted therapies. Yet, methods for multi-omics integration to reveal mechanisms of phenotype regulation are lacking.
Here, we present SiRCle (Signature Regulatory Clustering), a method to integrate DNA methylation, RNA-seq and proteomics data at the gene level by following central dogma of biology, i.e. genetic information proceeds from DNA, to RNA, to protein. To identify regulatory clusters across the different omics layers, we group genes based on the layer where the gene's dysregulation first occurred. We combine the SiRCle clusters with a variational autoencoder (VAE) to reveal key features from omics' data for each SiRCle cluster and compare patient subpopulations in a ccRCC and a PanCan cohort.
Applying SiRCle to a ccRCC cohort, we showed that glycolysis is upregulated by DNA hypomethylation, whilst mitochondrial enzymes and respiratory chain complexes are translationally suppressed. Additionally, we identify metabolic enzymes associated with survival along with the possible molecular driver behind the gene's perturbations. By using the VAE to integrate omics' data followed by statistical comparisons between tumour stages on the integrated space, we found a stage-dependent downregulation of proximal renal tubule genes, hinting at a loss of cellular identity in cancer cells. We also identified the regulatory layers responsible for their suppression. Lastly, we applied SiRCle to a PanCan cohort and found common signatures across ccRCC and PanCan in addition to the regulatory layer that defines tissue identity.
Our results highlight SiRCle's ability to reveal mechanisms of phenotype regulation in cancer, both specifically in ccRCC and broadly in a PanCan context. SiRCle ranks genes according to biological features. https://github.com/ArianeMora/SiRCle_multiomics_integration .
透明细胞肾细胞癌(ccRCC)肿瘤通过肾脏表观基因组、转录组、蛋白质组和代谢组的复杂重塑而发生和进展。鉴于随后出现的肿瘤和患者间的异质性,基于药物的治疗方法成效有限,这就需要进行多组学研究来提取调控关系,并最终开发靶向治疗。然而,目前缺乏用于揭示表型调控机制的多组学整合方法。
在此,我们提出了SiRCle(特征调控聚类)方法,该方法通过遵循生物学中心法则,即在基因水平整合DNA甲基化、RNA测序和蛋白质组学数据,即遗传信息从DNA流向RNA再流向蛋白质。为了识别不同组学层面的调控簇,我们根据基因失调首次发生的层面将基因分组。我们将SiRCle簇与变分自编码器(VAE)相结合,以揭示每个SiRCle簇的组学数据的关键特征,并比较ccRCC队列和泛癌队列中的患者亚群。
将SiRCle应用于ccRCC队列,我们发现糖酵解通过DNA低甲基化上调,而线粒体酶和呼吸链复合物受到翻译抑制。此外,我们识别出与生存相关的代谢酶以及基因扰动背后可能的分子驱动因素。通过使用VAE整合组学数据,然后在整合空间上对肿瘤分期进行统计比较,我们发现近端肾小管基因存在分期依赖性下调,这暗示癌细胞中细胞身份的丧失。我们还确定了负责其抑制的调控层面。最后,我们将SiRCle应用于泛癌队列,除了确定组织身份的调控层面外,还发现了ccRCC和泛癌之间的共同特征。
我们的结果突出了SiRCle在揭示癌症表型调控机制方面的能力,无论是在ccRCC中还是在泛癌背景下。SiRCle根据生物学特征对基因进行排名。https://github.com/ArianeMora/SiRCle_multiomics_integration 。