Suppr超能文献

植物在气候变化过程中的有性生殖:通过生态和进化系统生物学研究基因的自然功能。

Plant sexual reproduction during climate change: gene function in natura studied by ecological and evolutionary systems biology.

机构信息

Institute of Plant Biology, University Research Priority Program in Systems Biology/Functional Genomics & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland.

出版信息

Ann Bot. 2011 Sep;108(4):777-87. doi: 10.1093/aob/mcr180. Epub 2011 Aug 17.

Abstract

BACKGROUND

It is essential to understand and predict the effects of changing environments on plants. This review focuses on the sexual reproduction of plants, as previous studies have suggested that this trait is particularly vulnerable to climate change, and because a number of ecologically and evolutionarily relevant genes have been identified.

SCOPE

It is proposed that studying gene functions in naturally fluctuating conditions, or gene functions in natura, is important to predict responses to changing environments. First, we discuss flowering time, an extensively studied example of phenotypic plasticity. The quantitative approaches of ecological and evolutionary systems biology have been used to analyse the expression of a key flowering gene, FLC, of Arabidopsis halleri in naturally fluctuating environments. Modelling showed that FLC acts as a quantitative tracer of the temperature over the preceding 6 weeks. The predictions of this model were verified experimentally, confirming its applicability to future climate changes. Second, the evolution of self-compatibility as exemplifying an evolutionary response is discussed. Evolutionary genomic and functional analyses have indicated that A. thaliana became self-compatible via a loss-of-function mutation in the male specificity gene, SCR/SP11. Self-compatibility evolved during glacial-interglacial cycles, suggesting its association with mate limitation during migration. Although the evolution of self-compatibility may confer short-term advantages, it is predicted to increase the risk of extinction in the long term because loss-of-function mutations are virtually irreversible.

CONCLUSIONS

Recent studies of FLC and SCR have identified gene functions in natura that are unlikely to be found in laboratory experiments. The significance of epigenetic changes and the study of non-model species with next-generation DNA sequencers is also discussed.

摘要

背景

了解和预测环境变化对植物的影响至关重要。本篇综述聚焦于植物的有性繁殖,因为先前的研究表明,这种特性特别容易受到气候变化的影响,并且已经鉴定出了许多与生态和进化相关的基因。

范围

研究在自然波动条件下或基因功能在自然状态下的基因功能,对于预测对环境变化的反应非常重要。首先,我们讨论开花时间,这是表型可塑性的一个广泛研究的例子。生态和进化系统生物学的定量方法已被用于分析拟南芥 Halleri 中关键开花基因 FLC 的表达,该基因在自然波动的环境中。模型表明,FLC 作为前 6 周温度的定量示踪剂。该模型的预测通过实验得到了验证,证实了其对未来气候变化的适用性。其次,讨论了作为进化响应的自交亲和性的进化。进化基因组学和功能分析表明,拟南芥通过雄性特异性基因 SCR/SP11 的功能丧失突变而变得自交亲和。自交亲和性在冰期-间冰期循环中进化,表明其与迁移过程中的配偶限制有关。尽管自交亲和性的进化可能带来短期优势,但预测它会增加长期灭绝的风险,因为功能丧失突变几乎是不可逆转的。

结论

最近对 FLC 和 SCR 的研究确定了在实验室实验中不太可能发现的自然状态下的基因功能。还讨论了表观遗传变化的意义以及使用下一代 DNA 测序仪研究非模式物种的意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dad0/3170158/bd0a2a4c48d2/mcr18001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验